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1. INTRODUCTION

Accurate demand forecasting is crucial for managing business operations and supply chains, enabling
effective resource planning while avoiding costly issues such as stockouts and the bullwhip effect. It also
supports financial, human resource, and marketing planning, thereby significantly enhancing competitiveness
[L]-[4]. In light of this importance, recent years have witnessed the emergence of advanced machine learning
approaches, particularly deep learning-based models, which have consistently demonstrated superior predictive
performance [4], [S]. However, a major limitation of these models lies in the highly complex optimization
problems they generate: specifically, the need to optimize both the network architecture and hyperparameters
[6]-[8], as well as trainable parameters such as synaptic weights and biases. These problems typically involve
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vast search spaces that are often explored manually through trial and error, as exhaustive search methods are
computationally prohibitive [9], [[10].

These optimization challenges manifest at both the parametric and hyperparameter levels. Parametric
optimization is traditionally performed using backpropagation gradient descent, which faces notable challenges
such as the vanishing of the gradient - that is, a loss of effectiveness as the depth of the network increases [/11]]
- and the difficulties of navigating multiple local optima, often failing to reach the global optimum [7]. In
contrast, hyperparameter optimization cannot rely on gradient-based methods such as backpropagation, as the
objective functions are unknown. These black-box optimization problems are typically noisy, lack analytical
expressions, and are computationally expensive to solve [6], [8]. Thus, it is evident that although sophisticated
machine learning models significantly improve forecast accuracy, they require new optimization techniques
capable of overcoming their optimization drawbacks [7]].

In this context, nature-inspired optimization algorithms (NIOAs) have gained significant popularity.
These algorithms mimic natural processes to efficiently solve complex problems, providing good approximate
solutions within reasonable time limits. Their key advantage is that they require no detailed knowledge of
the problem, making them ideal for black-box optimization. Furthermore, they perform well in non-convex,
noisy, and stochastic search spaces, further driving their widespread adoption [12]], [[13]. Notable successes
include their scalable application in the search for high-performance neural architectures and hyperparameter
configurations [13], [14]. However, in parametric optimization, NIOAs have yet to match the computational
efficiency of gradient-based algorithms, presenting a promising avenue for future research [7]. In general, the
range of NIOAs applications is expanding and diverse, although some domains remain underexplored.

Some emerging areas within NIOAs include neuroevolution, multi-objective optimization, multitask
optimization, and multispace optimization. Neuroevolution applies NIOAs to evolve deep neural network ar-
chitectures, enabling the identification of efficient configurations tailored to specific tasks. This approach often
achieves better results compared to manually tuned models, including those adjusted by experts [6]. Multi-
objective evolutionary optimization, on the other hand, focuses on simultaneously optimizing typically con-
flicting goals, such as maximizing model accuracy while minimizing computational cost, which is particularly
valuable in hyperparameter tuning [6], [8]]. Multitask evolutionary optimization deserves special attention, as it
aims to create synergies between different optimization tasks by transferring knowledge across search spaces,
avoiding unproductive regions, and sharing promising solutions. This method has shown strong potential for
significantly improving the efficiency of NIOAs [14]. Expanding on this idea, recently proposed multispace
optimization algorithms introduce simplified auxiliary search spaces to support the optimization of large, com-
plex domains, with the knowledge gained being transferred back to the original space [[15]], [16l]. Amid the
promising convergence between machine learning and NIOAs, this study explores the application of these
advanced techniques in the design of machine learning models for demand forecasting. It analyzes the out-
comes achieved, uncovers recent NIOAs approaches that remain untapped in this context, and highlights key
research gaps, inviting further exploration of their potential in addressing complex neural network optimization
problems and advancing some of the most promising lines of investigation in the field.

2. METHOD

This study applies the preferred reporting items for systematic reviews and meta-analyses (PRISMA)
methodology to systematically review the state of the art on the use of NIOAs in artificial intelligence-based
demand forecasting models, with the aim of identifying research gaps. Within the PRISMA framework, NIOAs
are treated as interventions, while their impact on forecasting model performance is considered as the outcome.
PRISMA ensures the trustworthiness of the review by providing a transparent process for article selection and
synthesis of findings [17]. To enhance the objectivity of the latter, an automatic agglomerative hierarchical
clustering technique was employed to classify the reviewed studies.

2.1. Research questions

As recommended by the PRISMA methodology [[18]], the research questions were explicitly and con-
cisely posed to help evaluate the coherence of the study in all its parts. To do so, after the main question was
posed, the population, intervention, comparator, outcome and context (PICOC) framework was used to make
the secondary questions explicit. Table[I|shows the results of this process.
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Table 1. Research questions

Code  Question

Main  How have NIOAs been used in recent years in the development of Al-based demand forecasting models?

What are the characteristics of the AI models in which NIOAs have been involved?

What type of NIOAs have been used to intervene in Al-based forecasting models?

What metrics and models have been used to measure and compare the performance of models built with NIOAs?

What is the performance of the models built with NIOAs in relation to the established models?

In which economic sectors have they been applied and what main problems have been attempted to be solved with the
models built with NIOAs?

NnonQ—~w

2.2. Eligibility criteria

To define the scope of the article, the eligibility criteria [18] outlined in Tables [2] and [3] were estab-
lished. These criteria were also used to verify the inclusion decisions of the review. The focus was on selecting
recent, reliable empirical studies that propose demand forecasting models using Al and NIOAs.

Table 2. Inclusion criteria

Code  Description

11 Studies that use Nature-inspired algorithms, as part of the proposed Al-based demand forecasting models
12 Studies containing a detailed and comprehensive methodology related to Nature-inspired algorithms used
13 Empirical studies with models validated with real data from companies

14 Studies whose main objective is the development and validation of a demand forecasting model

Table 3. Exclusion criteria

Code  Description
El Articles published after 2018
E2 Other documents than scientific articles and conference papers
E3 Articles published in other idioms than English or Spanish or with full text not available
E4 Documents not related to the overall demand of a specific business market

2.3. Sources of information

In July 2024, the Scopus, Web of Science, and IEEE databases were consulted, as they are recognized
for their reliability within the academic community. The queries were conducted through their respective
platforms using the same search method for all three. At this stage, the temporal coverage of the search was
not limited.

2.4. Search strategy

During the development of the search strategy, the population, intervention, comparison, output (PICO)
framework guided the identification of relevant terms and their synonyms. These were linked using OR oper-
ators within each category. While the PICO components themselves were combined using AND operators to
create the following search string, applied uniformly across all data sources: (”demand forecasting” OR “de-
mand prediction” OR “demand prognostic” OR ”demand prognosis” OR ”demand estimation”) AND (”evo-
lutionary computation” OR “genetic algorithm™ OR “genetic programming” OR evolutionary programming”
OR evolution strategies” OR “neuro evolution” OR “’swarm intelligence””) AND (artificial intelligence” OR
“machine learning” OR “deep learning” OR “reinforcement learning” OR “neural networks”) AND (“error”
OR ”’performance” OR ”efficiency” OR “robustness” OR “accuracy” OR “precision”).

2.5. Article selection process

The researchers independently assessed the search results for consistency and relevance to the inclu-
sion and exclusion criteria. After resolving inconsistencies and making adjustments, the exclusion criteria were
applied at the title and abstract level, and the inclusion criteria at the full text level. Only studies agreed upon
by both researchers were included.

2.6. Data items and data collection

The authors identified the data required to answer the research questions and collaboratively devel-
oped an extraction matrix, with columns for data items and rows for included studies. Each article was indepen-
dently reviewed and discrepancies were resolved through discussion. Extracted data encompassed: i) economic
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sector; ii) problem addressed and limitations of prior solutions; iii) NIOAs and their classification by [[19];
iv) the role of NIOAs in the model; v) type of optimization performed; vi) machine learning methods employed;
vii) optimization strategy (e.g., single-objective or multi-objective); viii) forecast model outline; ix) data de-
scription; x) performance metrics; xi) benchmarking models; xii) performance of the proposed model.

2.7. Synthesis method

The qualitative synthesis involved classifying articles based on similarities using the criteria described
in subsection 2.6, specifically items iii), v), vi), vii), and ix). To reduce bias, hierarchical agglomerative
clustering was applied using a feature table to compute Euclidean distances. The silhouette method was
used to determine the optimal number of clusters. The implementation was carried out in Python, using
scipy.cluster.hierarchy for linkage construction, sklearn.cluster for clustering execution, and sklearn.metrics
for silhouette evaluation, adopting Ward’s method to ensure clear separation between clusters. Subsequently,
the clusters and sub-cluster are analyzed and grouped when the differences were minimal. This classification
informed the synthesis by identifying contributions to the research questions and led to the development of a
new conceptual model that integrates these insights and addresses key challenges using state-of-the-art tools.

3.  RESULTS AND DISCUSSION

This section presents the results of the study selection process and the subsequent qualitative synthesis.
The selection results are detailed, tracing the progression from the initial records identified in the search to
the final number of studies included in the review. For the quantitative synthesis, this section reports the
classification of the selected articles and provides answers to the research questions, offering insights into the
key findings derived from the analysis.

3.1. Result of the studies selection

The search process initially retrieved a total of 282 records. After eliminating duplicates and system-
atically applying the exclusion and inclusion criteria, 36 studies were selected for the final analysis, as shown
in Figure Most of these studies were published in 2019, 2023, and 2024. In terms of application domains,
the predominant sectors represented in the selected articles are electricity, water distribution, and retail.

I Identification of studies via databases and registers l

= || Records identified
S || n=282) Records removed before
é Scopus, n =150 N Screening (n = 65)
= || Web of Science, n =57
_§ IEEE, n=75 Duplicate records, n = 65
N i
Records excluded (n = 143)
Records screened |,| E1,n=103
(n=217) E2,n=7
i E4,n=33
a" Replorts sought for Reports not retrieved (n =4)
o retrieval e -
g E3,n=4
gl m=19)
| 2
& l
Reports excluded (n=34)
Reports assessed for does not meet criterion I1,
eligibility — n=18
(n=70) does not meet criterion 12,
l n=6
__
Studies included in review
3 || m=36)
% Reports of included
= || studies
(n=36)

Figure 1. Results of article selection

3.2. Result of the qualitative synthesis

As a result of the analytical operations conducted on the collected information, such as automatic
grouping, comparison, and categorization of articles, and subsequent confrontation of evidence with the
respective research questions, significant findings were obtained, which are reported as follows:
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3.2.1. Result of the classification of articles

After converting the relevant data items from the extraction matrix into dummy variables and eliminat-
ing the redundant variables, the features table for the calculation of the Euclidean distances between the articles
was obtained. In relation to the optimal number of clusters, the silhouette method initially recommended 24,
a high number relative to the 36 articles analyzed. Based on the best silhouette value in the range of two to
five clusters, the authors selected four main clusters and used the 24 clusters as subclusters within these main
clusters. After analyzing similarities and differences within and between them, subclusters with negligible dif-
ferences were merged to align with the research objectives. Each class and subclass were then descriptively
named. The final classification, along with the numbering of the automatic clusters, is presented in Table 4]

Table 4. Classification of articles
Classification of articles Cluster ~ Sub-cluster  Articles

a) Shallow learning optimizers 1 13
i) Evolutionary-swarm optimizers 1 1 3

ii) Shallow parameter optimizers 1 2,3,4,5 8
iii) Shallow multi-objective optimizers 1 6 1
iv) Shallow ensemble optimizers 1 7 1
b) Evolutionary optimizers 2 16
i) Genetic programming models 2 13, 14 3

ii) Shallow hyperparameter optimizers 2 15 1
iii) Support vector machine (SVM) evolutionary optimizers 2 18 1
iv) Deep learning optimizers 2 11

- Deep structural optimizers 2 16, 17, 19 4

- Deep multi-objective optimizers 2 8,9 3

- Deep parameter optimizers 2 10, 11 3

- Deep ensemble optimizers 2 12 1

¢) Deep swarm optimizers 3 20,21 3
d) SVM swarm optimizers 4 22,23,24 4

The following describes the classes and subclasses presented in Table[d]

a. Shallow learning optimizers: this class groups models based on shallow neural networks (only one hidden
layer), where NIOAs primarily optimize trainable parameters, with differences across subclasses.

i) Evolutionary-swarm optimizers: this subclass combines genetic algorithms (GA) with swarm intelli-
gence to optimize models. A key example is study in [20], where GA explores new weights and biases,
and PSO exploits GA’s best findings through continuous transfer learning. Similarly, studies in [21]] and
[22] use GA to pre-train initial weights and biases, improving the efficiency of gradient descent fine-
tuning. They also employ Northern Goshawk optimization (NGO) and Gray Wolf optimization (GWO),
respectively, to optimize other model hyperparameters.

ii) Shallow parameter optimizers: this subclass focuses on optimizing only the trainable parameters of shal-
low neural networks, mainly through evolutionary algorithms. Studies in [23]-[26] use the mind evolu-
tionary algorithm (MEA), GA, and PSO respectively for pre-training backpropagation neural networks
(BPNN), while studies in [27]-[30] apply differential evolution (DE), GA, and artificial immune system
(AIS) algorithms respectively for full parameter optimization. These approaches reduce prediction er-
rors compared to backpropagation, though at the cost of longer training. Notably, MEA improves both
accuracy and execution time over GA.

iii) Shallow multi-objective optimizers: this subclass includes a single study proposing a multi-objective
optimization to reduce lag inputs while minimizing error for a multilayer perceptron (MLP) model. An
adaptative neuro-fuzzy inference system (ANFIS) further refines predictions, with both input selection
and ANFIS parameters optimized by GA. The model outperforms standalone MLP and ANFIS in ac-
curacy. Additionally, the authors claim that by reducing inputs, computational cost decreases, enabling
real-time use, though no quantitative evidence is provided in [31].

iv) Shallow ensemble optimizers: this subclass includes a single study in [32]] where PSO combines predic-
tors, including an extreme learning machine (ELM), outperforming standalone components.

b. Evolutionary optimizers: this class is characterized by using only and exclusively evolutionary algo-
rithms, leaving aside swarm intelligence. It is made up of four subclasses that are distinguished from
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)

ii)

iif)

iv)

each other by the type of optimization they perform, and the AI model that intervenes, where deep learn-
ing models are a prominent set.

Genetic programming (GP) models: this subclass applies GP to generate explicit mathematical expres-
sions for demand forecasting, employing Canonical GP, Multi-Gene GP, and multi-expression program-
ming in [33]-[33]], respectively. These studies benchmark against ARIMA, artificial neural network
(ANN), and ANFIS, consistently achieving lower errors. GP stands out for producing interpretable mod-
els, unlike the black-box nature of neural networks.

Shallow hyperparameter optimizers: this subclass includes a single study from the water distribution
sector [36], where GA optimizes structural and training hyperparameters of a shallow BPNN, including
hidden neurons, learning rate, and validation criteria. The optimized model outperforms both standalone
BPNN and ARIMA. The study highlights the effectiveness of GA for hyperparameter tuning, even with
gradient-based parameter training.

SVM evolutionary optimizers: this subclass includes a single study in [37] where GA optimizes the
penalty (C) and kernel (gamma) parameters of an SVM for forecasting. GA adaptively tunes crossover
and mutation rates, balancing exploration and exploitation as in [20]. The model improves accuracy, and
the authors suggest faster convergence, though no quantitative evidence is provided.

Deep learning optimizers: this is the largest subclass, with 11 studies focused on optimizing deep learning
models, mainly using evolutionary algorithms. It includes four groups: two optimize hyperparameters,
one targets trainable parameters, and one combines models using weighted averaging. Each group is
described below.

Deep structural optimizers: this group includes four studies on hyperparameter optimization of deep neu-
ral networks [38]-[41]], covering both structural (layers, neurons) and training hyperparameters
(dropout rate, batch size, learning rate). All combine one algorithm for exploration and another for
refinement, such as Bayesian optimization (BO)-GA [38], GA-DE [39]], and GA-scatter search (SS)
[41]. All improve accuracy over standalone methods. Notably, GA-SS reduced execution time to
23 minutes compared to 58 minutes for GA alone and 480 minutes for trial-and-error.

Deep multi-objective optimizers: this group includes three studies by the same author [42]]-[44], applying
non-dominated sorting genetic algorithm II (NSGA-II) to jointly maximize R? and minimize test error by
optimizing structural hyperparameters of ANN, long short-term memory (LSTM), and Transformer mod-
els. Trainable parameters are refined via gradient methods. Accuracy and explanatory power improve
across studies. To reduce computational cost, training time or epochs are limited during optimization,
with final retraining of the best models for full convergence. These studies confirm the effectiveness of
multi-objective optimization for neural network design.

Deep parameter optimizers: this group focuses on parameter optimization in deep learning using neu-
roevolution, which starts from simple architectures with a single layer and few neurons, progressively
evolving both structure and parameters. The studies apply neural network simultaneous optimization
algorithm (NNSOA) [45]] and neuro evolution of augmenting topologies (NEAT) [46]. Additionally, [47]
uses GA for pre-training in a gray neural network (GNN), reportedly improving convergence, though
without quantitative evidence.

Deep ensemble optimizers: this is a group consisting of a single study in [48] in which GA is used to
obtain the optimal weights to assemble a MLP in charge of forecasting trends, with an LSTM in charge of
forecasting seasonality and other complex variations. The authors found that the proposed model obtains
better error metrics than benchmark models.

Deep swarm optimizers: this class includes three studies that improve deep neural network pre-training
by combining aggressive exploration with strong exploitation. Study in [49] uses the modified dragon-
fly algorithm (MDA), merging genetic operators with Dragonfly refinement. Study in [S0] combines
stochastic fractal search (SFS) for broad exploration with whale optimization algorithm (WOA) for pre-
cise exploitation, improving network accuracy and convergence. Study in [51] applies PSO to deep
network, enhancing temporal memory and prediction accuracy.

SVM swarm optimizers: this class shows how swarm intelligence enhances SVM models by optimizing
kernel parameters, regularization terms, and epsilon. Boosted multiverse optimizer (BMVO) improves
Incremental SVM accuracy [52], while PSO boosts SVM and LSTM-SVM hybrid models [9], [S3].
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Study in [10] combines GA with swarm methods for SVM optimization in cloud demand forecasting.
These studies demonstrate the versatility of swarm intelligence to improve non-neural models across
sectors.

3.2.2. Result of the research questions

This section consolidates the insights from the classified articles to evaluate their contributions to the
research questions shown in Table[I] It examines the application of NIOAs in Al-based forecasting models,
highlighting the characteristics of the models, the specific NIOAs employed, the metrics and benchmarking
models used, the performance achieved, and the primary challenges and sectors addressed.

Main question: how have NIOAs been used in recent years in the development of Al-based demand
forecasting models? NIOAs have been predominantly applied to neural network optimization, representing
28 of the 36 studies reviewed. In addition, some applications have focused on the optimization of SVM and
genetic programming (GP) models. Notably, no use of NIOAs was identified for other machine learning models
beyond these categories.

Neural network optimization covers both shallow and deep learning, as shown in Figures2]and[3] In
these figures, the main branches, sub-branches, and leaves represent the optimization focus, applied technique,
and specific NIOA with its corresponding study. In shallow networks, the focus is primarily on parametric
optimization, achieved through pre-training or full training, mainly using GA. In deep learning, the emphasis
shifts to hyperparameter optimization, where advanced techniques such as hybridization, adaptive mechanisms,
and multi-objective approaches are applied. Notably, no studies address full parametric optimization of deep
networks.

GA-BPNN [21][22][24][25]

Pre-training =O== MEA-BPNN [23]
PSO-BPNN [26]
DE-BPNN [27][30]
GA-RBFNN [28]
Parameters AIS-WNN [29]
WCA-WNN [29]
NIOAs Training

Applications on Hybrid =@

Shallow Learning

Dynamic mechanism
GA-RBFNN[20]

Hyperparameters == GA-BPNN [36]

Imputs == Multi objective NSGA II-BPNN [31]

Figure 2. NIOAs applications on shallow learning

GA-LSTM [40]

‘ BO-GA-LSTM [38]
Hybrids ~O— o5 ca (sTM [41]

Hyperparameters
Dynamic mechanism =O— SHADE-BPNN [39]

NSGA II-BPNN[42]
NIOAs Multi objective === NSGAII-LSTM [43]

Applications on NSGA II-TNN [44]
Deep Learning

NNSOA [45]
NEAT [46]

GA-GNN [47]
Parameters == Pre-Training -({

Hybrids =O—

Hyperparameters
and parameters

=~ Neuroevolution =0O—

GA-DA-GAN [49]
SFS-WOA-BRNN [50]

Figure 3. NIOAs applications on deep learning
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P1: What are the characteristics of the AI models in which NIOAs have been involved?

The AI models predominantly optimized by NIOAs are neural network-based. Among these, half
(14 studies) involve shallow neural networks, while the other half focus on deep neural networks. The shallow
neural networks include fully connected single hidden layer BPNNs [21]]-[27], [30], [31], [36l], radial basis
function neural networks (RBFNNGs) [20]], [28]], and wavelet neural networks [29]. For deep learning models,
most studies involve LSTM architectures [38]], [40l, [41]], [43]], [48]], [50] and fully connected deep BPNNs [39]],
[42]], [43]], [46]. Other deep neural networks explored include transformer neural networks [44]], generative
adversarial networks (GANs) [49], Deep Echo State Networks [51]], and GNN [47]. Finally, NIOAs have also
been applied to models based on SVM [10], [371, [S2], [S3], and GP [33[]-[35].

P2: What type of NIOAs have been used to intervene in Al-based forecasting models?

In shallow learning, parameter pre-training has predominantly relied on GA [21]], [22], [24], [25] and
its variants, such as MEA [23]], with occasional use of PSO [26]. For complete parameter training, GA [28]],
DE [27], [30], AIS [29]], and the hybrid GA-PSO [20] have been employed. Additionally, GA has been ap-
plied to hyperparameter optimization [36] and input selection [31]]. In deep learning models, GA has been
extensively used for optimizing structural and training hyperparameters, either independently [40], in com-
bination with other algorithms such as SS [41], BO [38]], and success-history-based parameter adaptation for
differential evolution (SHADE) [39]], or within the NSGA-II multi-objective optimization framework [42]-[44].
Neuroevolutionary algorithms like NNSOA [45] and NEAT [46] have been applied to simultaneously optimize
hyperparameters and trainable parameters. For parametric pre-training of deep networks, GA has also been
employed [47], along with hybrids such as MDA [49] and SFS-WOA [50]. For optimization of SVM-based
models, both GA [37]] and Swarm Intelligence algorithms [52], [53] have been used, as well as hybridization
of both types of metaheuristics [10].

P3: What metrics and models have been used to measure and compare the performance of models built with
NIOAs?

Root mean squared error (RMSE), mean absolute percentage error (MAPE), and mean absolute error
(MAE) are the most used metrics to assess prediction accuracy and error normalization in both shallow and deep
models. Correlation coefficients and NSE provide additional performance insights. Shallow models benchmark
against regression, ARIMA, and BPNN, while deep models are compared to support vector regression (SVR),
ANN, and non-optimized LSTM. In these models, advanced metrics like R? and SEP assess goodness-of-fit
and robustness, especially for LSTM, GAN, and Transformers. In SVM models, RMSE and MAPE are the
main metrics, with specific measures like the Bullwhip Effect used in inventory forecasting.

P4: What is the performance of the models built with NIOAs in relation to the established models?

The reviewed studies provide compelling evidence that NIOAs significantly improve forecasting ac-
curacy in shallow and deep neural network-based models, as well as SVM-based models. In neural models,
this improvement is consistent across hyperparameter optimization, trainable parameter optimization, or a com-
bination of both, with notable examples from studies [20]], [45]. While the primary focus of most studies is
on reducing forecast errors, some authors also address computational efficiency concerns, proposing strategies
such as hybrid approaches (e.g., BO-GA [38]], SS-GA [41]], MDA [49]) that enhance convergence speed and
efficiency compared to standalone methods. However, hybrids like NEAT-NCS increase execution time [46],
and others, such as SFS-WOA, reduce training time but add pre-training steps, leaving overall efficiency un-
certain [50]. Additional efficiency-oriented strategies include adaptive algorithms with automatic parameter
tuning [20], [37]], [39], transfer learning mechanisms between GA and PSO [20], and input variable selection
[31].

P5: In which economic sectors have they been applied and what main problems have been attempted to be
solved with the models built with NIOAs?

The primary sectors utilizing NIOAs are electricity, water distribution, manufacturing, retail, and
cloud computing. Across sectors, common challenges in forecasting include managing non-linear dynamics,
reducing overfitting, and improving accuracy in dynamic systems. Traditional models, such as regression,
ARIMA, and MLR, often fail to capture non-linearities, while standalone machine learning models like ANN,
SVM, and BPNN struggle with overfitting and limited adaptability. To address these issues, machine learn-
ing models and hybrid frameworks have been introduced. LSTM models enhance accuracy but face difficulties
with overfitting and hyperparameter tuning, while hybrid approaches, such as LSTM-SVR and GA-DE integra-
tions, improve non-linear modeling but encounter computational efficiency limitations. NIOAs play a critical
role in overcoming these limitations by enhancing hybrid frameworks’ predictive accuracy, adaptability, and
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potentially computational efficiency. Techniques like PSO, GA, WOA, and DE optimize parameters and hy-
perparameters, addressing the shortcomings of traditional and standalone models. Sector-specific applications
highlight these advancements: in electricity, NIOAs support dynamic forecasting for short-term and annual
energy demands [33]], [35]; in water distribution, they address agricultural and urban needs by managing non-
linear patterns in daily and hourly forecasts [23]], [44]; in retail and manufacturing, they tackle the bullwhip
effect and refine e-commerce demand predictions [9], [34]; and in cloud computing, NIOAs enhance resource
demand forecasting and workload optimization in highly dynamic environments [10], [27], [29]].

3.3. Proposed conceptual model

This section introduces a new optimization model to address the key issue identified: optimizing train-
able parameters in deep learning models. The model incorporates advanced tools like heuristic hybridization
and adaptive parameter control, while addressing the main gap: the lack of evolutionary multitasking applica-
tions.

3.3.1. Foundational studies

This model adopts the multi-space evolutionary search for large-scale optimization [15]], a variant of
evolutionary multitasking optimization. It generates an auxiliary search space with simplified versions of the
original space to ease the search process. Insights learned from the auxiliary space guide the original space
search, enhancing effectiveness and efficiency, while the best results from the original space return to enrich
the auxiliary search.

On the other hand, the model draws inspiration from low-bit quantization optimization [54] for con-
structing the auxiliary search space. Quantization, a deep network compression technique, discretizes con-
tinuous variables representing neural network weights, reducing possible weight values and bit requirements,
thereby simplifying optimization. Recent advances have shown that low-bit-width models can maintain high
accuracy by applying quantization to both activations and weights [53)]. The model is also influenced by meta-
heuristic hybridization [49], [50], and adaptive mechanisms for mutation and crossover control in GA [20],
[39].

3.3.2. Model components
Model components are the key elements that define the search strategy, adaptive mechanisms, and
hybrid techniques of the optimization framework.

— Original search space. This search space encompasses all possible values for the weights and biases of
a deep neural network. This continuous space has dimensions equal to the total number of weights and
biases in the network.

— Auxiliary quantized search space. This space discretizes the dimensions of the original space based on
the range of the initial population. It allows generating values beyond the initial ranges but within feasible
limits. The number of possible values per dimension is governed by the bit width (m-bit); higher m-bit
values permit more possibilities, with the binary dimension (2-bit) representing the most extreme case.

— GA with adaptive mechanism. This search algorithm explores the discretized auxiliary space using
mutation and crossover, guided by an adaptive mechanism that promotes aggressive exploration in the
early stages and shifts to exploitation as fitness improves.

— SFS-WOA hybridization. This hybrid algorithm searches the original space using insights from the
auxiliary space, combining the exploration strength of SFS with the refinement capabilities of WOA.

— Automatic granularity adjustment mechanism. This mechanism adjusts the m-bit in the auxiliary space,
starting with low m-bits for efficient exploration of large regions and increasing the value during evolu-
tion for finer exploration of promising areas.

3.3.3. Operational dynamics

The model employs multi-task optimization with transfer learning. The auxiliary space, driven by
aggressive GA and low m-bit values, rapidly explores large regions and identifies promising areas. This in-
formation directs the more precise but less aggressive SFS-WOA algorithms in the original space to exploit
these areas and refine the search for optimal solutions. The best candidates from the original space are then
transferred back to the auxiliary space to adjust the m-bit and enhance exploration. Figure [] illustrates the
operation of the proposed model.
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Figure 4. Schematic of the proposed model

3.3.4. Expected outcomes

The simultaneous search across two spaces, the use of multiple NIOAs, and the dynamic resizing of
the auxiliary space via m-bit adjustments are expected to incur significant computational costs. However, the
rapid convergence facilitated by the auxiliary space is anticipated to accelerate optimization in the original
space, maintaining precision and avoiding local optima. This efficiency could drastically reduce execution
times, a critical factor for practical applications of deep neural networks in demand forecasting across various
industries.

3.4. Discussion

NIOAs are primarily applied to neural network optimization. In shallow networks, the focus is on
parameter optimization, including pre-training [21]-[26] and full training [20], [27]-[30]. In deep networks,
parameter optimization is rare due to high computational costs and is limited to neuro evolution [435], [46]
or advanced pre-training methods [47], [49], [SO]. Neuro evolution reduces complexity by progressively in-
creasing network size, starting with a single layer, but remains resource-intensive. In contrast, hyperparameter
optimization is more common in deep learning, with seven studies in [38]]-[44] applying techniques such as
hybridization, adaptive mechanisms, and multi-objective optimization. In shallow networks, only one study
in [36] addresses hyperparameter tuning, as parameter optimization offers greater gains. This contrast reflects
the higher practicality and impact of hyperparameter optimization in deep learning, given the difficulty of
parameter-level optimization.

Despite their differences, shallow and deep networks share similar optimization strategies, especially
hybridization. In shallow models, [20] applies a GA-PSO hybrid for complete RBFNN training, while deep
learning studies use BO-GA and SS-GA for LSTM hyperparameter tuning [38]], [41], and GA-DA and SFS-
WOA for pre-training [[10], [49]. Adaptive mechanisms are also common: [20] applies them to shallow param-
eter optimization, and [39] to deep hyperparameter tuning. Multi-objective optimization with NSGA-II is used
in both shallow [31]] and deep networks [42]]-[44].

While the main goal of NIOAs is to improve model accuracy, several studies acknowledge their high
computational cost, primarily due to intensive neural network evaluations. To address this, different efficiency-
oriented strategies have been proposed. In shallow networks, studies in [26], [31] highlight that selecting rele-
vant input variables reduces model complexity and improves efficiency. [26] proposes grey relational analysis
for input selection, while [31] uses a multi-objective evolutionary algorithm that jointly minimizes forecast er-
ror and selects inputs. Although these approaches are expected to improve efficiency, no quantitative validation
is provided. Efficiency is also explored through the selection of specific NIOAs, with [23] finding MEA more
efficient than GA for shallow network pre-training, and [29] showing water cycle algorithm (WCA) surpassing
AIS in training efficiency, though at the cost of accuracy. Adaptive mechanisms in GA are another approach
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to improving efficiency. Studies in [20], [37] dynamically adjust mutation and crossover rates, encouraging
exploration early and shifting to exploitation as fitness improves. In deep learning, [39] applies similar adap-
tive mechanisms to DE parameters based on historical success. These mechanisms are expected to accelerate
convergence; however, the reviewed studies do not provide quantitative validation.

An attractive strategy for improving efficiency is the hybridization of metaheuristics, particularly in
deep learning. In [38], Bayesian optimization (BO) enables rapid exploration, with solutions refined by a
GA. Similarly, [41]], [49], [S0] combine GA or SFS with refinement algorithms such as scatter search (SS),
dragonfly algorithm (DA), or WOA, improving both accuracy and convergence, with supporting runtime and
convergence curve analysis reported in [41] and [49]. A standout example is [20], where the authors combine
adaptive GA mechanisms with PSO in a transfer learning framework, claiming accelerated convergence and
reduced execution time, though without detailed quantitative validation.

Another approach to improve efficiency is limiting training during the optimization phase, as shown
in [42]], [43]. The first study applied time-constrained training to prioritize faster-converging models, reducing
computational effort and enabling broader exploration. The second limited training epochs, accelerating the
identification of promising models while maintaining feasibility. In both cases, the best models were retrained
without constraints to ensure full convergence. For neural network pre-training, studies in [49], [S0] report
reduced training times, as gradient-based methods start from near-optimal values. However, the additional pre-
training stage raises questions about overall efficiency. Across these techniques, quantitative evidence remains
scarce, highlighting the need for further research focused on systematically measuring efficiency gains and final
model performance, particularly in deep learning.

Notably, most advanced NIOA techniques have already been applied to Al forecasting, including hy-
bridization [20], |38, [4-1]], [49], [S0], parameter control [20], [39], multi-objective optimization [3 1], [42]-[44],
and neuro evolution [45], [46]. In contrast, evolutionary multitasking—designed to accelerate convergence by
sharing information across tasks—remains largely unexplored. The only partial example is study in [20]], which
incorporates transfer learning, a key element of multitasking. This gap highlights an opportunity for future re-
search to apply evolutionary multitasking in NIOA-based forecasting models to improve both efficiency and
performance.

Additionally, this paper also contributes to the debate on backpropagation limitations. Strong evidence
shows that NIOAs outperform backpropagation in reducing error metrics for shallow networks, reinforcing the
relevance of the local optima stagnation problem and questioning the claim in [6] that local optima often ap-
proximate global optima. A similar performance gap in deep learning would further expose gradient vanishing
issues. However, the high computational cost of applying NIOAs to deep networks limits research in this area.

Finally, this study has two key limitations. First, there is limited quantitative evidence to support the
efficiency claims of the proposed techniques. Second, the predominance of studies from the electrical sector
in the final selection may have biased the observed applications of NIOAs. This could be due to the inclusion
of the IEEE database, or alternatively, it may reflect that the electrical sector is where NIOAs have seen the
greatest development.

4. CONCLUSION

This review has comprehensively addressed the research questions, showing that NIOAs are mainly
applied to parametric optimization in shallow neural networks and hyperparameter optimization in deep net-
works. The most common techniques include hybridization, adaptive parameter control, multi-objective opti-
mization, and neuro evolution. Optimized models are mostly BPNNs and LSTMs, with GA as the main NIOA,
often combined with swarm methods. Building on these findings, models optimized with NIOAs consistently
outperform reference models, though often at the expense of higher computational costs. Some studies propose
strategies to improve efficiency, but most lack quantitative validation. Despite these challenges, NIOAs are ap-
plied in various sectors, mainly in the electric power, water distribution, and retail industries. In terms of future
research opportunities, significant gaps were identified, such as the lack of comprehensive parametric optimiza-
tion studies for deep neural networks, the limited application of evolutionary multitasking optimization, and
the absence of quantitative studies aimed at improving the efficiency of NIOA-based optimization. To bridge
this gap, the authors introduce a new model that utilizes these methodologies to improve the optimization of
parameters in deep neural networks.
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