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 Unbalanced intersectional traffic flow increases vehicle delays, fuel 

consumption, and pollution. This study investigates the application of deep 

reinforcement learning (DRL) to optimize traffic signal timing at the 

Pamelisan intersection in Denpasar, Indonesia. Real-world traffic data were 

incorporated into a SUMO microsimulation environment to train DRL 

agents using the deep Q-network (DQN) algorithm. Experimental results 

show that DRL-based optimization reduced the average vehicle waiting time 

from 594.49 seconds (static control) to 169.44 seconds and 173.10 seconds 

for agents trained without and with noise, respectively. The average vehicle 

speed remained stable at 5.6–5.97 m/s across all scenarios, indicating 

enhanced traffic efficiency without adverse effects. The findings underscore 

the effectiveness and adaptability of DRL in addressing traffic inefficiencies, 

optimizing them, and offering a robust solution for dynamic traffic 

management at unbalanced traffic intersections in urban areas. 
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1. INTRODUCTION 

Transportation problems are still often caused by traffic congestion, which has an impact on traffic 

accidents, pollution, and economic losses [1], [2]. Previous research has succeeded in summarizing several 

techniques that can be used to solve traffic problems. Previous research has succeeded in summarizing 

several techniques for solving traffic problems based on their completion time [3]. These techniques are 

grouped into long-term, medium-term, and short-term solutions. One of the short-term or real-time 

techniques is carried out through good management of traffic flow at intersections [4], [5]. A traffic light 

system can manage short-term traffic flow at intersections [5], [6]. Adaptive signal control methods, such as 

split, cycle and offset optimization technique (SCOOT) [7] and Sydney coordinated adaptive traffic (SCAT) 

[8] are widely used in traffic light management systems. They mostly rely on manually scheduled signal 

phases and work well when traffic flow is nearly equal in all directions. This schedule changes dynamically 

by looking only at traffic volume using induction loop sensors. As a result, signals cannot see and react to 

changes in traffic patterns in real time, and transportation operators often have to manually change signal 

phases to keep up with traffic conditions [9]. Furthermore, it is often possible to find more traffic in one 

direction than the other (unbalanced traffic flow). 

The traditional system lacks intelligent management, which results in people waiting, regardless of 

the absence of vehicles from the opposite direction. This inevitable waiting time sometimes makes people 

restless, often ending in violation of rules and accidents [10]. Furthermore, this leads to more fuel consumption 

https://creativecommons.org/licenses/by-sa/4.0/
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and pollutes the surrounding environment. Therefore, intelligent or dynamic traffic light control needs to be 

continuously improved, especially when looking at other factors, such as waiting time at intersections and the 

traffic volume factor, which is currently widely used. Artificial intelligence, which has developed in this 

decade, provides hope for the emergence of systems with high intelligence and adaptation. Research [11]–[15] 

uses reinforcement learning (RL) and deep reinforcement learning (DRL) approaches to provide solutions to 

overcome traffic congestion. The RL model directly tries to adapt to solve the problems imposed on the model, 

including traffic congestion problems. Despite its success, RL still has shortcomings. When dealing with state-

action spaces that are too large, RL algorithms often require manual division of space into smaller and separate 

parts to represent different states (state-action space discretization). Discretization of the action-state space 

causes the complexity of the problems RL can solve to be limited and time-consuming [16]. 

DRL comes as a development of conventional RL by adding a deep neural network (DNN) to RL. 

DRL has succeeded in overcoming several weaknesses of conventional RL. One of the main reasons is that 

DRL uses DNN, which can overcome higher problem complexity and represent more complex value 

functions or policies [17]. Thus, DRL can address problems with larger dimensions and more complex 

environments, which are difficult to handle by conventional RL. In addition, DNN in DRL can automatically 

learn more meaningful feature representations from input data, allowing agents to recognize more complex 

patterns and make better decisions [18]–[20]. DRL, which has the advantage of handling large-scale and 

high-complexity problems, makes it an attractive choice for covering the weaknesses of conventional RL in 

research to build a more adaptive traffic light control system. 

A traffic simulator is often used to evaluate traffic control strategies [21], emphasizing 

sustainability, safety, and traffic efficiency performance indicators. Researchers have used two main methods 

to test traffic simulators: macroscopic and microscopic. Several studies have used macroscopic simulations to 

mimic real-world traffic dynamics [22], [23]. However, more and more studies are turning to microscopic 

simulations, such as SUMO, VISSIM, and AIMSUN, which offer a more comprehensive depiction of 

complex traffic dynamics, including the stochastic character of driving and route choices [21]. SUMO, as one 

of the microscopic simulators, is widely used to evaluate traffic control strategies. However, to the authors' 

knowledge, no SUMO simulation has been built using actual traffic flow data (and real-world road networks) 

to demonstrate the unbalanced traffic flow state. 

Furthermore, according to Tan et al. [18], most DRL work is still not ready for direct application in 

real-world traffic because, until now, the DRL agent is assumed to have perfect knowledge of the traffic 

environment. In reality, a congestion detection or prediction system is highly desired to estimate traffic 

conditions with significant disturbances, one of which is unbalanced traffic flow. Therefore, in this study, an 

adaptive traffic control system was built using deep Q-network (DQN) [24]. This DRL algorithm is used to 

optimize vehicle waiting time at signalized intersections by optimizing changes in traffic light times. The 

DQN in this study was trained using SUMO microscopic simulation data with characteristics of unbalanced 

traffic flow and perturbation of queue length. 
 

 

2. METHOD 

This research is built with four main steps. First, the number of vehicles passing through one lane at 

an intersection was calculated using YOLOv8. Next, an intersection simulation will be built using the 

previous calculation data using SUMO microsimulation, which will be continued by training DRL agents 

using SUMO simulation as input. Finally, the optimization that the DRL agent did will be analyzed. Figure 1 

shows us the research flow diagram. 
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Figure 1. Research stages flow 
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2.1.  Calculating vehicle flow 

The data used to build the intersection simulation with unbalanced traffic flow was taken from the 

Dinas Perhubungan Provinsi Bali or Bali Provincial Transportation Agency, which utilized surveillance 

cameras installed at the Pamelisan intersection. The data obtained is a video recording of the surveillance 

camera. The video is used as input to calculate vehicles passing through the lanes at the Pamelisan 

intersection. The configuration of the position of the vehicle flow counter-point on the lane at the Pamelisan 

intersection is shown in Figure 2. Figure 2 shows that six counter-points were used to calculate vehicle flow 

in each lane at the intersection. Table 1 presents a more concise relationship between the position of the point 

and the direction of vehicle flow calculated at each counter-point. To count vehicles, we use the YOLOv8 

object detection algorithm [25]. YOLOv8 is used to detect vehicles passing through a lane. After that, we use 

an object tracking and counting algorithm made explicitly for tracking objects from the results of YOLOv8 

detection to count the traffic flow. The flowchart of the tracking and counting algorithm is shown in Figure 3. 
 
 

 
 

Figure 2. Configuration of the vehicle flow counter point 
 

 

Table 1. Summary of vehicle flow direction at each counting point 
Label Counting 

point 

Vehicle flow direction 

● Ngurah Rai 1 Bypass Ngurah Rai → Pamelisan (East-North); 

Bypas Ngurah Rai → Bypass Ngurah Rai (East-West) 

● Ngurah Rai 2 Bypass Ngurah Rai → Bypass Ngurah Rai (East-West); 

Bypas Ngurah Rai → Pamelisan (East-South) & Bypass Ngurah Rai → Bypass Ngurah Rai (East-East/U-turn) 

● Ngurah Rai 3 Bypass Ngurah Rai → Bypass Ngurah Rai (West-East); 
Bypas Ngurah Rai → Pamelisan (West-North) & Bypass Ngurah Rai → Bypass Ngurah Rai (West-West/U-turn) 

● Ngurah Rai 4 Bypass Ngurah Rai → Pamelisan (West-South) & Bypas Ngurah Rai → Bypass Ngurah Rai (West-East) 

● Pamelisan 1 Pamelisan → Baypass Ngurah Rai (South-East), Pamelisan → Baypass Ngurah Rai (South-West);  

Pamelisan → Pamelisan (South-North) 
● Pamelisan 2 Pamelisan → Baypass Ngurah Rai (North-East), Pamelisan → Baypass Ngurah Rai (North-West);  

Pamelisan → Pamelisan (Nort-South) 

 

 

2.2.  Building a SUMO simulation 

After obtaining the vehicle flow data that passes through each road lane at the Pamelisan 

intersection, the next step is translating the vehicle flow into the SUMO microsimulation [26]. In SUMO, the 

vehicle flow is converted into a vehicle emergence simulation using the routes function. SUMO is a well-

known open-source traffic simulator that provides practical graphical user interfaces (GUIs) and application 

programming interfaces (APIs) for efficiently managing and modeling road networks. It offers a visual 

graphical interface for creating different road network architectures in many grid formats and allows dynamic 

routing [16]. Additionally, SUMO supports OpenStreetMap (OSM). A full scenario may be created quickly 

and easily with the help of the OSM script. Typemaps and settings appropriate for the chosen traffic modes 

will be imported into the network. Furthermore, SUMO can control each intersection's traffic lights using 

user-defined policies. SUMO makes it possible to take pictures at every simulation stage, giving us the state 

data for our study. SUMO simulation for the Pamelisan intersection was built with data calculated from the 

actual traffic flow obtained in the previous step. Using this data, we build a simulated environment that 

imitates real-world traffic flow at the Pamelisan intersection, which has an unbalanced traffic flow and static 

traffic light phase. 
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Figure 3. Flowchart of tracking object algorithm 

 

 

2.3.  Deep reinforcement learning agent training 

In this study, the DRL agent was built using the SUMO-RL library [27]. SUMO-RL provides a 

simple interface to create a RL environment with SUMO for traffic signal control. The DRL agent built is an 

agent that uses the DQN algorithm for the training process to optimize vehicle waiting time at the Pamelisan 

intersection. DQN in SUMO-RL was built using the stable baselines3 (SB3) library [28]. 

DQN given input as a simulation generated in the previous stage as an environment  

(SUMO environment). Because this study only optimizes one traffic light (Pamelisan intersection), the DRL 

agent used is one (single agent). The agent performs optimization using the Markov decision process (MDP) 

model with three components: observation, action, and reward. 

For observation space, DQN uses DNN, which has 15 inputs generated from observations in the 

environment, namely two green phases (north-south and east-west green lights), one transition phase  
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(yellow light), and density and queue values on six lanes of the road at the Pamelisan intersection (12 inputs). 

In addition to standard observations in training, observations with noise were made, which were carried out 

by changing the queue length value. This is a way to represent real-world conditions where large vehicles 

sometimes block surveillance cameras, which causes changes in the queue length value at intersections. 

Action space generated as output from DNN. There are 2 action spaces in this study, as illustrated in Figure 4. 

One for Ngurah Rai road (East-West), depicted in Figure 4(a), and one for the green phase at Pamelisan road 

(North-South), depicted in Figure 4(b). The reward function is calculated using changes in cumulative 

vehicle delay. In other words, the reward is how much the total delay (the sum of the waiting times of all 

approaching vehicles) changes concerning the previous time step. 
 

 

  
(a) (b) 

 

Figure 4. Pamelisan intersection in SUMO with (a) Ngurah Rai green phase and (b) Pamelisan green phase 
 

 

2.4.  Evaluation 

The final stage of this research is the evaluation process carried out on the DRL model, which was 

trained in the previous stage. Two evaluation metrics were used to measure the agent's optimization ability: 

the accumulated waiting time at the intersection (for all road lanes) and the average vehicle speed at the 

intersection. Vehicle waiting time is defined as the time (in seconds) spent below 0.1 m/s since the last time 

the vehicle traveled faster than 0.1 m/s. (The vehicle waiting time is reset to 0 every time the vehicle moves). 

In (1) calculates the total vehicle waiting time at an intersection. 

 

𝑡𝑜𝑡𝑎𝑙_𝑊 =  ∑ ∑ 𝑊𝑖𝑗
𝑉𝑖
𝑖=1

𝐿
𝑖=1  (1) 

 

Where total_W is the total waiting time in all lanes of the road in the intersection, L is the number of lanes of the 

road in the intersection, Vi is the number of vehicles in lane i and Wij is the waiting time of vehicle j in lane i.  

The average vehicle speed at an intersection is calculated by finding the average speed of the 

vehicles at the intersection, normalized by the maximum speed allowed for each vehicle. If there are no 

vehicles at the intersection, this function returns 1. In (2) calculates the normalized average vehicle speed at 

an intersection. 

 

𝑎𝑣𝑔_𝑠𝑝𝑒𝑒𝑑 =  
1

𝑁
∑

𝑆𝑖

𝑆𝑚𝑎𝑥,𝑖

𝑁
𝑖=1  (2) 

 

Where avg_speed is the normalized average speed for all vehicles at the intersection, N is the number of 

vehicles at the intersection, Si is the speed of vehicle i at the time of observation, and Smax,i is the maximum 

speed permitted for vehicle i (in the simulation each type of vehicle is set to a maximum permitted speed). 

To evaluate the agent's optimization capability, each average waiting time and average speed 

produced after training results are compared with the initial simulation data's average waiting time and speed. 

Since the initial simulation data used is static traffic lights, comparing the average waiting time and speed 

before and after training can show the changes in the average waiting time and speed at the intersection when 

using static time and the DRL agent. We also did another evaluation to see whether DRL agents have some 

different results when faced with training with noise. This evaluation will compare DRL agents trained using 

noisy data (perturbation) to agents that do not experience noise in their training. 
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3. RESULTS AND DISCUSSION 

3.1.  Vehicle flow counting result 

Video data obtained from Bali Provincial Transportation Agency, produced from surveillance 

cameras at the Pamelisan intersection. Because there are no surveillance cameras with a wide view at the 

Pamelisan intersection, and only pan-tilt-zoom (PTZ) cameras are available, data for the entire lane cannot 

be taken at once. The video was taken for 4 days from January 7 th, 2024 to January 11th, 2024, to obtain 

video recordings of vehicles passing through each lane at the Pamelisan intersection in Denpasar, one road 

arm for one day of recording. For 4 days, recordings were obtained from each road arm and each lane of 

the road could be calculated. In this study, to represent the conditions and average density of each lane, 

video recordings were selected for 7,200 seconds (120 minutes) at the same time on different days 

(recordings of one arm and the other were on different days). The selected video time was 13.00 to 15.00 

WITA. 

The obtained video calculated vehicle flow using YOLOv8 by calculating vehicles passing through 

the perimeter box configured as in Figure 2. The vehicle classes that are set to be recognized by YOLOv8 are 

cars, buses, and trucks. In this study, we did not calculate the flow of 2-wheeled vehicles (motorcycles). As a 

result, 1,504 vehicles passed through Ngurah Rai 1 and Ngurah Rai 2 lanes, 1,013 vehicles passed through 

Ngurah Rai 3 and Ngurah Rai 4 lanes, 1,017 vehicles passed through Pamelisan 2 and 236 vehicles passed 

through Pamelisan 1 lanes. Table 2 presents the number of vehicle flows (based on observation position) and 

the destination of vehicles passing through the Pamelisan intersection. It should be noted that observations 

were not carried out at once, so for Ngurah Rai 1 and Ngurah Rai 2 observations were carried out on the first 

day, Ngurah Rai 3 and Ngurah Rai 4 on the second day, Pamelisan 1 on the third day and the fourth day for 

Pamelisan 2. 

 

 
Table 2. Vehicle flow counting result 

Depart lane Arrival lane Vehicle count Total 

Pamelisan 1 (South) Ngurah Rai 1 (East) 48 236 

Ngurah Rai 2 (East) 44 
Ngurah Rai 4 (West) 77 

Pamelisan 1 (North) 67 

Pamelisan 2 (North) Ngurah Rai 1 (East) 234 1017 

Ngurah Rai 1 (East)# 2 

Ngurah Rai 3 (West) 687 
Ngurah Rai 3 (West)# 23 

Pamelisan 2 (South) 71 

Ngurah Rai 3 (East)* Ngurah Rai 3 (West) 39 289 

Pamelisan 1 (North) 250 

Ngurah Rai 4 (East)* Ngurah Rai 4 (West) 652 724 
Pamelisan 2 (South) 72 

Ngurah Rai 2 (West)* Ngurah Rai 2 (East) 247 324 

Pamelisan 2 (South) 77 

Ngurah Rai 1 (West)* Ngurah Rai 1 (East) 418 1180 

Pamelisan 1 (North) 762 

# Lane changing occur 

* As the posisition of departing is close together, we assume the departing point from arrival lane 

 

 
3.2.  SUMO simulation 

This paper presents a case study of real-world traffic at Pamelisan intersection, the intersection of 

Pamelisan Road and Ngurah Rai Road in Denpasar City. We simulated the Pamelisan intersection using the 

SUMO simulator. The intersection layout in SUMO is depicted in Figure 4. Pamelisan intersection features 

four directions, and Ngurah Rai Road has two lanes. The leftmost lane in Ngurah Rai is designated for left 

turns and going straight, and the rightmost lane is reserved for right turns, going straight, and u-turn. 

Pamelisan Road has one lane with no designated vehicle turns (free for all turns). In addition to building road 

lanes, SUMO simulation also simulates vehicle flows, as described in Table 2. 

The Pamelisan intersection that we simulated using SUMO has two green light phases and two 

transition phases. One green light phase is for Ngurah Rai Road, depicted in Figure 4(a), and one for 

Pamelisan Road, depicted in Figure 4(b). These two green phases also work as action state for DQN. Each 

phase has a transition phase (yellow light) that cycle between green and yellow phase. These green and 

yellow phases have their duration and are called signal phase duration. For the Pamelisan intersection, the 

standard (fix-timed) signal phase duration is shown in Table 3. 
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Table 3. Pamelisan intersection fix-timed signal phase duration 
Phase Duration (second) Cycle length (second) 

Ngurah Rai green phase 39 90 

Ngurah Rai yellow phase 6 

Pamelisan green phase 39 

Pamelisan yellow phase 6 

 

 

3.3.  Agent training 

We perform agent training using multi-layer perceptron (MLP) policy from SB3, hyperparameters 

for the model can be seen in Table 4. We perform training using 72,000 timesteps on two observation mode 

settings. The first setting is using observations without noise and the second setting is using observations 

with noise. The setting without noise undertakes the vehicle flow value in Table 2 without changes. The 

setting with noise perturbation is carried out by inserting noise into the length of the vehicle queue at the 

intersection so that there is a change in the observation. The inserted noise is generated randomly using the 

random Gaussian function, with mean =0 and standard deviation =1. 

 

 

Table 4. Hyperparameter value for DQN model 
Parameter Value 

Learning rate 1e-3 

Learning start 5 

Training frequency 4 

Gamma 0.9 

Exploration fraction 0.1 
Exploration final episode 0.05 

Target update interval 500 

Replay buffer size 50000 

 

 

After training for 50 episodes, the average reward obtained by the agent per episode is summarized 

in Figure 5. Figure 5(a) shows the average reward obtained by the agent when trained in a setting without 

noise, at the beginning of training the reward obtained is relatively small but as the training episodes 

increase, higher rewards are obtained and tend to be stable. Figure 5(b) shows the average reward obtained 

by the agent through training with a setting adding noise. Since the beginning of training, the reward obtained 

by the agent is more stable in this setting. Stable agent reward during agent training with noise because the 

agent learns not to monitor the queue length in the environment too much at the beginning of training. 

Although there is a difference initially, both agents get stable rewards at the end of training. This reward 

shows that the agent has learned how to optimize at this intersection (with an unbalanced traffic flow). 

Evidence for this statement can be seen in Figure 6, which shows that the average waiting time at the 

intersection between agents looks close together. 

 

 

  
(a) (b) 

 

Figure 5. Agent reward while training (a) without noise perturbation and (b) with perturbation 
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Figure 6. Intersection average waiting time during training without noise perturbation and training with perturbation 

 

 

Training history in Figure 6 also shows that the agent trained without using noise at the beginning of 

training has difficulty finding a generalization pattern of waiting time to queue length. This difficulty causing 

the agent to explore at the beginning of training. After getting the exploration pattern, the agent shows quite 

good exploitation, so that at the end of training the waiting time at the intersection is even better than the 

agent trained using noise. On the other hand, the agent trained using noise has a much smaller waiting time at 

the beginning of training, but as training progresses, the waiting time value tends to remain the same. This 

shows that if we want faster exploitation, we can use training with noise, but if we want a higher waiting time 

reward, we can use training without noise. 

 

3.4.  Evaluating optimization result 

Evaluation of the optimization performed by the DRL agent at the Pamelisan intersection is 

measured using SUMO simulation and built using an unbalanced traffic flow. Furthermore, the simulation 

results of the intersection optimized using the DRL agent were compared with those of the intersection 

simulation without optimization. Testing was also conducted using a simulation containing noise to see 

whether the agent could overcome noise at the intersection. The noise used during the evaluation was 

generated in the same way as during training. 

Agents were evaluated on one simulation episode with noise and one without noise (both with 

imbalanced flows). This simulation was introduced to agents trained with noise and agents trained without 

noise. Figure 7 shows the evaluation results of each agent for optimization with waiting time as the measured 

parameter. Figure 7(a) depicts the waiting time value before agent optimization, with an average waiting time 

of 594.49 seconds at each intersection. When optimizing a simulation with noise, Figure 7(b) depicts the 

optimization outcomes obtained by an agent trained without noise during its training period. Figure 7(c) 

depicts the optimization results achieved by an agent trained on noisy data during its training phase. When 

optimization is performed on a noise-free simulation, Figure 7(d) displays the optimization results of an agent 

trained without noise during its training period. Figure 7(e) displays the optimization outcomes of an agent 

trained with noisy data during its training period. 

According to Figure 7, the average waiting time at the intersection is lower for Figures 7(b) to 7(e), 

(248.5, 173.1, 169.4, and 186.5 seconds respectively) than for the intersection without optimization  

Figure 7(a). Furthermore; we can compare Figures 7(b) and 7(c) to see the agent's optimization ability when 

faced with a simulation with noise on the queue length. From these two images, we can see that the agent 

trained with noise on the training data in Figure 7(c), can become accustomed to optimizing at the 

intersection earlier. Although the agent in Figure 7(b) was similarly successful in optimizing, it is clear that 

there were multiple instances where the agent became confused by the noise that arose, increasing the 

average waiting time. Figures 7(d) and 7(e) demonstrate the agent's evaluation in the simulation with no 

noise on queue length. If the agent had difficulty dealing with noise in the previous evaluation, there was no 

noise in the simulation this time, so the agent trained without noise Figure 7(d) and with noise Figure 7(e) 

had no difficulty optimizing; it's just that the agent in evaluation Figure 7(d) appeared to optimize better 

when measured by its average waiting time. Meanwhile, if we look at it, Figure 7(e) is not much different 

from Figure 7(d), and the optimization is not much different; it's just that because it is trained using training 

data containing noise, the agent is more careful and has difficulties at the beginning of the episode, but 

becomes more accustomed at the end of the evaluation episode. 
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(a) (b) 

 

  
(c) (d) 

 

 
(e) 

 

Figure 7. Waiting time at Pamelisan intersection under different strategies: (a) without optimization,  

(b) using DRL agent trained without noise perturbation, (c) using DRL agent trained with noise perturbation, 

(d) using DRL agent trained without noise perturbation in non noisy traffic, and (e) using DRL agent trained 

with noise perturbation in non noisy traffic 
 
 

Apart from waiting time, evaluation is also done by considering the average speed of vehicles at the 

intersection. Figure 8 shows the average speed of vehicles when the evaluation simulation is carried out.  

For this scenario, Figure 8(a) shows when the intersection is not optimized using an agent. Figure 8(b)  

shows the average speed of vehicles when the intersection is optimized using an agent trained without noise, 

the intersection simulation is not affected by noise in the queue. Figure 8(c) shows the average speed of 

vehicles at an intersection optimized using an agent trained using noise in the queue length, the evaluation 
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intersection simulation is also affected by the same noise as the noise during training. The average speed of 

cars traveling through the intersections, whether optimized or not, is not significantly different, as shown in 

Figures 8(a) to 8(c) (5.6-5.9 m/s or 20.16-21.24 km/h). Given the decreases in average waiting time at the 

intersection, it indicates that optimization has succeeded in increasing the flow of vehicles passing through 

the intersection without requiring an increase in average vehicle speed. This suggests that the average speed 

at the intersection does not change much, even with optimization agents present or not. 
 
 

  
(a) (b) 

 

 
(c) 

 

Figure 8. Average speed at intersection with different strategy, (a) without optimization, (b) using DRL agent 

trained without noise perturbation, and (c) using DRL agent trained with noise perturbation 
 

 

4. CONCLUSION 

This study effectively used the DQN algorithm in conjunction with DRL to optimize traffic signal 

time at the Pamelisan intersection with unbalanced traffic flow. Vehicle waiting time was significantly 

reduced, according to experimental data. With the DRL agent trained without noise, the average waiting time 

dropped from 594.49 seconds in the baseline static traffic signal system to as low as 169.44 seconds, and 

with the DRL agent trained with noise, it dropped to 173.10 seconds. These enhancements show that 

intersection efficiency is efficiently optimized by both noise-trained and noise-free DRL agents, with the 

noise-trained agent demonstrating superior robustness in noisy environments. Furthermore, the average 

vehicle speed (about 5.6–5.97 m/s) stayed constant across situations, demonstrating that the optimization 
enhanced traffic flow without sacrificing smoothness or safety. These findings demonstrate how DRL-based 

systems have the ability to completely transform adaptive traffic control in intricate and ever-changing 

metropolitan settings. By using DRL-based DQN, the intersection efficiency is significantly improved, 

demonstrating the potential for implementation in real-world scenarios. 
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