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Unlike humans, the energies in industrial machine sounds (IMS) vary across a
wide range of frequencies. Mel scales, which are developed for the perception
of human audio, fail to capture the complete information present in IMS. To im-
prove performance, we propose using an inverse-Mel scale, along with the con-
catenation and combination of Mel and inverse-Mel scale based spectrograms,
as feature vectors for audio anomaly detection (AAD) in industrial machines.
Adaptation in the Librosa Python package and the DCASE 2022 Challenge Task
2 baseline system is pursued for the construction of inverse-Mel scale spectro-
grams. Experiments are conducted using the malfunctioning industrial machine
investigation and inspection for domain generalization (MIMII DG) datasets.
Systems based on the inverse-Mel scale achieve a maximum improvement of
up to 37% in the bearing machine and an average improvement of up to 9%
in the area under the curve (AUC) score across all machines in the MIMII DG
datasets. The proposed features also enhance DG, overcoming the effects of
environmental and operational domain shifts caused by variations in recording
setup, load, background noise, and operational patterns. Challenge official eval-
uator assessed the proposed system against the evaluation datasets, ranking it
three positions higher than the baseline system.
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1. INTRODUCTION

Industrial machine sounds (IMS) convey considerable information about the status of a machine

(L1-[3].

Through astute listening and careful observation, an operator can quickly assess the health of the

machine. An experienced operator can easily identify faults that may arise in an otherwise healthy working
machine. The operator’s expertise enables the anticipation and prevention of potential crises. Audio anomaly
detection (AAD) systems for industrial machines mimic the behavior of operators to identify machine health
conditions and operational anomalies. AAD for fault diagnosis and prognosis in industrial machines is being
widely researched and has been one of several tasks in all editions of the DCASE challenges since 2020 [4]-[7].
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Several researchers focused on the analysis of high-frequency regions in IMS. Liu et al. [8] explored
fault analysis in belt conveyor idlers. The effective distinguishing frequency bands for various fault condi-
tions due to damaged cages, raceway slots, and large pits in the inner/outer races on the rolling element, are
found to be concentrated in the medium to high-frequency (6-20 kHz) ranges. Guochao et al. [3] examined
the audible sounds produced by milling machines and found that the sound signals spanned the full audible
range. The authors identified low-frequency sound signals generated by tool holder vibrations, mid-range
frequency sounds from metal deformation processes, and high-frequency sounds from friction mechanisms.
Liu et al. [9] proposed a lightweight fault diagnosis network called MPNet for identifying bearing faults in
rotating machinery. Authors outlined the limitations of Mel-frequency cepstral coefficients (MFCC) being
sensitive only to low-frequency information and instead used linear spectrograms constructed using short-time
Fourier transform as features. Liu et al. [10] observed high-frequency components in the audio signals of belt
conveyors, specifically in the range of 1 to 5 kHz. The impacts and vibrations from defective rollers contribute
to the generation of these high-frequency audio signals. Zhou et al. [11] noted acoustic signals generated by
bulge conditions in tire endurance tests conducted on a drum testing machine to generate high energy peaks
in the high-frequency regions. Zhao et al. [12] noted that features extracted from high-frequency regions of
vibration signals are more effective in characterizing faults in power end bearings. Ma et al. [13] proposed
the fusion of MFCCs, inverted Mel-scale frequency cepstrum coefficients IMFCCs), Gammatone frequency
cepstral coefficients (GFCCs), and linear prediction cepstral coefficients (LPCCs) to create a hybrid cepstral
feature known as Mel-inverted-Gammatone-linear cepstral coefficients (MIGLCCs). This feature encapsulated
the individual advantages of each constituent feature. Their findings indicated that the fusion of MFCCs and
IMFCCs yielded the best results among all dual feature combinations tested. All the above research emphasized
the importance of focusing on the energy present in higher frequency regions and highlights the benefits
achieved through the use of inverse-Mel scale frequency warping technique. However, the application of
inverse-Mel scale based spectrograms for AAD in industrial machines was not considered.

Based on the original investigation, this research pursued the construction of an inverse-Mel scale, a
combination of Mel and inverse-Mel scale spectrograms, as front-end features for extracting energy distribution
across the complete range of frequencies in IMS. The spectrograms are constructed by adapting the Librosa
Python library. These constructed spectrograms serve as input for an autoencoder-based AAD system designed
to identify anomalous operations in industrial machines. Experiments conducted on the malfunctioning indus-
trial machine investigation and inspection for domain generalization (MIMII DG) dataset [4] demonstrate that
AAD systems with inverse-Mel scale spectrograms perform better.

This work is motivated by the DCASE Challenge 2022 Task 2 [4]—[7]], which focuses on AAD and
domain generalization (DG) techniques in industrial machines. A total of 31 teams submitted 81 entries to the
challenge. Most participants used Mel scale based acoustic features such as Mel energies, log-Mel energies,
MEFCC, Mel spectrograms, and log-Mel spectrograms in their systems [7]. Use of inverse-Mel scale based
acoustic features for AAD and DG on the challenge datasets is proposed in this research. This research is the
first of its kind to propose the use of the inverse-Mel scale for DCASE Challenge 2022 Task 2. Comparison
with the published challenge scores [7] derives a relative position of 21st rank for the results presented in this
research. This ranking is three positions higher than the official ranking of the baseline system.

Rest of the paper is organized as follows: section 2 describes the materials and methods employed
in this experimentation. It includes the methods for construction of spectrograms, details the MIMII DG
dataset, and the experimental setup along with the evaluation metrics for the DCASE Challenge 2022 Task 2.
Section 3 presents and discusses the results, including performance scores and improvements observed on both
the development and evaluation datasets. Section 4 summarizes the conclusions drawn from this research.

2. MATERIALS AND METHODS
2.1. Sound database of industrial machines

MIMII DG [4] a public database shared as a development and evaluation dataset for Task 2 of the
DCASE Challenge 2022 [7]] is used in this work. This dataset includes normal and anomalous operating sounds
from five different industrial machines. It is designed for the development and evaluation of AAD and DG
techniques in industrial machines. The dataset is divided into source and target domain data. The source domain
data contains only the normal and anomalous operating sounds of the machine under test, whereas operational
and environmental domain shifts commonly encountered in industrial setups are synthetically infused into these
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sounds to generate the target domain data. The source domain data is employed for evaluating AAD, while the
target domain data is used for evaluating DG.

2.2. Construction of inverse-Mel scale spectrograms
2.2.1. Equations of inverse-Mel scale

The two commonly used implementations for transformation between linear and Mel scale frequencies
are hidden Markov toolkit 3 (HTK) [14] and Slaney [15]. Slaney implementations apply a linear formula for
frequencies up to 1 kHz and a logarithmic or anti-logarithmic formula for conversions above 1 kHz. HTK
implementations follow a logarithmic or anti-logarithmic formula for the entire range of frequencies. HTK
implementations are used in this work. The relationship between linear frequency scale (fy.) and Mel-
frequency scale (fy,¢) is noted in (I and (2),

fmel = 2595 * lOglO(l + égg) M
frz = 700 % (10Umet/259) _q) )

Several researchers in [13[], [16]-[22] defined the inverse-Mel scale as the complement of the Mel
scale. The authors suggested flipping the original Mel filterbank around its midpoint to derive the inverse-Mel
filterbank. Mathematical relationships between the linear frequency scale (fr.) and the inverse-Mel frequency
scale (firrer) are proposed by Chakroborty [23]], [24], Sharma [25]], Latha [16]], Lalitha [[18], and Ma [13].
Latha [16]] and Lalitha [[18]] introduced in (EI), Ma [13]] proposed in @I), Chakroborty [23], [24] and Sharma [25]
presented in (3).

4000 — fr.
Finter = 2146.1 — 2595 * logio(1 + Tfh’) N
4000 — fir-
firvrer = 2146.1 — 1127 x log1o(1 + 7fH) “
700
4031.25 — fh-

finzer = 2195.286 — 2595 * logo(1 + ) )

700

Equation (3)) is employed in this research. In the works of Chakroborty 23], [24] and Sharma [25]), the sampling

frequency is 8 kHz, whereas the sampling frequency in the MIMII DG [4] database is 16 kHz. Hence, the

constant terms are changed from 2195.286 to 2844.06 and 4031.25 to 8031.25. The modified equations used

in this work to convert between the linear frequency scale (fg,) and the inverse-Mel frequency scale (f;pze)

are presented in (6) and (7).

L 8031.25 — fu.
700

fr= = 8031.25 — 700 % (10(2844-06=firre/2595) _ 7 (7)

firter = 2844.06 — 2595 * logp(1 ) (©6)

Figure [T] shows plot of center frequencies for all filters in Mel scale and inverse-Mel scales. Center
frequencies represent the midpoint of frequency bands used in Mel and inverse-Mel transformations. The Mel
scale follows a logarithmic scale, whereas inverse-Mel scale functions on an anti-logarithmic scale.
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Figure 1. Center frequencies in Mel and inverse-Mel scales
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2.2.2. Variants of spectrograms
The following types of spectrograms are constructed in this work.

— Mel scale spectrogram constructed using the standard equations of the Mel scale. Functions for con-
structing Mel spectrograms, as defined in the Librosa Python package, are employed.

— Inverse-Mel scale spectrogram constructed using the inverse-Mel scale equations described in section
2.2.1. The adaptation made to the Librosa Python package for constructing inverse-Mel scale spectro-
grams is described in section 2.2.3.

— Concatenated spectrogram constructed by vertically stacking Mel and inverse-Mel spectrograms. The
Mel spectrogram captures lower frequencies, ranging from O to 4 kHz, while the inverse-Mel spectrogram
captures higher frequencies from 4 to 8 kHz.

— Combinational spectrograms constructed by aggregating Mel and inverse-Mel spectrograms across the
entire frequency range. The value at a specific frequency is determined by applying maximum, minimum,
or average pooling to the Mel and inverse-Mel values. Consequently, this work develops three types of
combinational spectrograms: maximum, minimum, and average value spectrograms.

2.2.3. Adaptations in Librosa package and DCASE 2022 baseline system for construction of inverse-Mel
scale spectrograms

Adaptations have been made in several source files of the Librosa package [26] for the construc-
tion and presentation of inverse-Mel spectrograms. Two additional parameters, “isInverseMel” and “isHTK,”
are included as arguments in the melspectrogram, mel, and mel_frequencies functions in the *filters.py’ and
‘spectral.py’ files of the Librosa package. The “isInverseMel” parameter allows for toggling between Mel and
inverse-Mel scale formulas, while the “isHTK” parameter enables the selection of either Slaney or HTK im-
plementations. The concatenation and combination of Mel and inverse-Mel spectrograms are performed in the
‘common.py’ file of the DCASE 2022 baseline system. The adapted source files are available for download
under the GNU General Public License at https://github.com/KaderShaikhVESIT/inverse-Mel.

2.3. Experimental set-up and evaluation metrics

Focus of this work is to introduce the inverse-Mel scale and discuss its implications. Hence, this work
utilized the baseline system of DCASE 2022 Challenge Task 2 [4], [6], [[7] as a detector. The baseline detector
is a deep autoencoder. Each 10 seconds of audio is converted into a spectrogram that acts as an input feature
vector for the autoencoder. The development and evaluation datasets of DCASE Challenge 2022 Task 2 are
used for training and testing the detector. Confusion matrix, precision, recall, F1 score, and area under the curve
(AUC) are calculated for both source and target domain data, whereas partial area under the curve (pAUC) is
calculated for combined source and target data. Equations for calculation of AUC and pAUC scores are defined
in [4], [6]]. System evaluation and ranking is done using the official evaluator shared by the organizers [27].

3.  RESULTS AND DISCUSSION
3.1. Inferences on all spectrograms

All spectrograms of a typical machine sound recording from the Slide rail machine
(section_00_source_train_normal_0010_vel_1100.wav) in the MIMII DG dataset are shown in Figure [2] The
spectrograms utilize a blue-white-red (BWR) colormap. Where bright red indicates higher amplitude or activ-
ity and blue indicates lower amplitude.

Figure [2(a) presents the spectrogram using a linear frequency scale based on short-time Fourier
transform (STFT), which exhibits bright red spots in both low and high-frequency regions, suggesting that
sound energy is distributed across the entire frequency range. In Figure J(b), the Mel spectrogram empha-
sizes lower frequency regions while suppressing the higher frequency regions. Frequencies above 2 kHz are
primarily depicted in white-blue color, indicating a repression of high-frequency components. This limitation
suggests that the Mel scale spectrogram fails to capture and present the complete information inherent in IMS.

In contrast, the inverse-Mel scale spectrogram shown in Figure [JJc) enhances the high-frequency
regions, effectively revealing the energy content that is otherwise suppressed in the Mel scale spectrogram.
Energy components above 6 kHz, which are often obscure in Mel spectrograms, are vividly displayed here.
The concatenated spectrogram shown in Figure[2[d) merges Mel and inverse-Mel spectrograms at the midpoint
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frequency of 4 kHz, capturing prominent characteristics from both. This concatenated spectrogram effectively
captures and represents regions of high amplitude and activity present in both types of spectrograms.

Figures 2fe) to 2(g) show pixel-wise combinations of Mel and inverse-Mel spectrograms using
average, maximum, and minimum aggregation methods, respectively. These spectrograms successfully capture
the shape and vivid colors characteristic of both Mel scale and inverse-Mel scale spectrograms. The intensity
of the colors varies depending on the aggregation formula used in their construction.

Thus, the use of the inverse-Mel scale enables complete representation of the information present
in IMS. The concatenation and combination spectrograms further support this representation. With these
spectrograms, this research is able to delve into unexplored regions of IMS.
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F-30dB

I -40 dB

-50 dB

-60 dB

0 Time (s) 10
(2

Figure 2. Spectrogram representations of a typical slide rail machine sound from the MIMII DG dataset:
(a) linear-frequency spectrogram using STFT, (b) Mel scale spectrogram, (c) inverse-Mel scale spectrogram,
(d) concatenated Mel and inverse-Mel spectrograms, (e) combined average spectrogram, (f) combined
maximum spectrogram, and (g) combined minimum spectrogram

3.2. Inferences on the experiment results

Evaluations are conducted for all machine types, sections, and domains in the MIMII DG develop-
ment and evaluation datasets [4]. Tables [I] and 2] present the scores and percentage improvements observed
in the development datasets. Tables [3] and [4] present the scores and percentage improvements observed in the
evaluation datasets. The source domain AUC, target domain AUC, and pAUC scores for all machine types,
sections, and domains in the development datasets are listed in Tables[I{a) and [I(b). Tables [2[(a) and 2[b) lists
the percentage improvements for these scores relative to the results from Mel scale spectrograms.
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Table 1. AUC and pAUC scores of all machines on development dataset (best values are highlighted) with
(a) Mel scale, inverse Mel scale, and combination maximum; and (b) concatenated, combination average, and
combination minimum

(a)

Mel scale (AUC) Inverse Mel scale (AUC) Combination maximum (AUC)

Section source target partial source target partial source target partial
Bearing
0 0.5504 0.6048 0.50737 0.5613 0.6915 0.48922  0.5322 0.6103 0.50316
1 0.7176 0.5547 0.54869  0.5293 0.7608 0.4979 0.751 0.6068 0.60395
2 0.4563 0.5581 0.52316  0.415 0.5275 0.52764  0.4972 0.5695 0.55132
Average 0.57477  0.57254  0.52641 0.50187  0.65994 0.50492  0.59347 0.59554  0.55281
Fan
0 0.778 0.343 0.59158  0.7338 0.3745 0.59053  0.7969 0.3397 0.59237
1 0.7096 0.4577 0.51843  0.6691 0.4386 0.505 0.7721 0.4377 0.53395
2 0.7744 0.6346 0.62764  0.7712 0.5825 0.56606  0.8985 0.6093 0.64369
Average 0.754 0.47844  0.57922  0.7247 0.4652 0.55386  0.8225 0.46224  0.59
Gearbox
0 0.6558 0.6555 0.61369  0.707 0.7604 0.63869  0.6088 0.6981 0.61079
1 0.6605 0.5803 0.535 0.6866 0.6241 0.52737  0.6599 0.5707 0.51369
2 0.7744 0.6623 0.61711  0.8108 0.6928 0.66053  0.7484 0.6589 0.6079
Average 0.6969 0.6327 0.5886 0.7348 0.69244  0.60886  0.67237  0.64257  0.57746
Slider
0 0.8068 0.5681 0.61843  0.751 0.6088 0.68264  0.8469 0.5944 0.61237
1 0.6841 0.4969 0.53895  0.7755 0.5775 0.54632  0.678 0.4657 0.54579
2 0.8709 0.3866 0.53658  0.8809 0.4324 0.56158  0.8838 0.3431 0.525
Average 0.78727  0.48387  0.56465 0.80247  0.53957  0.59685  0.8029 0.46774  0.56106
Valve

0 0.5408 0.5182 0.52474  0.5991 0.5506 0.51158  0.5195 0.504 0.51974
1 0.5257 0.5313 0.50106  0.5808 0.5951 0.49527  0.5388 0.5083 0.49606
2 0.5187 0.4422 0.49395  0.5891 0.5008 0.49711  0.5635 0.4461 0.4879
Average 0.5284 0.49724  0.50658  0.58967  0.54884 0.50132  0.5406 0.48614  0.50123

Average overall  0.66827  0.53296  0.55309  0.6707 0.5812 0.55316  0.68637 0.53084  0.55651

(®)
Concatenated Combination average Combination minimum
Section source target partial source target partial source target partial
Bearing
0 0.4945 0.6248 0.49369  0.4959 0.6138 0.5 0.5617 0.68 0.49158
1 0.6664 0.6121 0.57369  0.7009 0.6333 0.57685  0.5748 0.6511 0.55632
2 0.5327 0.6153 0.59474  0.4817 0.5834 0.49158  0.4791 0.5662 0.48922
Average 0.56454  0.6294 0.55404  0.5595 0.61017  0.52281 0.53854  0.63244  0.51237
Fan
0 0.7862 0.3522 0.58948  0.7808 0.3805 0.59343  0.6314 0.4412 0.59343
1 0.6763 0.4758 0.51527  0.6775 0.4517 0.5129 0.6876 0.402 0.52183
2 0.7506 0.5375 0.60974  0.7364 0.5882 0.6 0.5619 0.6061 0.59343
Average 0.7377 0.45517  0.5715 0.73157  0.47347 0.56878  0.62697  0.4831 0.56957
Gearbox
0 0.6615 0.6905 0.58895  0.4991 0.5832 0.49843  0.6484 0.7284 0.57237
1 0.66 0.5972 0.54106  0.6162 0.5455 0.52316  0.6709 0.5925 0.52474
2 0.7841 0.6822 0.61685  0.7656 0.678 0.63211  0.8228 0.6682 0.625
Average 0.70187  0.65664  0.58229  0.62697  0.60224  0.55123  0.71404  0.66304  0.57404
Slider
0 0.8127 0.5875 0.63685  0.7914 0.5787 0.64106  0.7855 0.6671 0.65027
1 0.7487 0.5592 0.55869  0.7096 0.5207 0.55316  0.7244 0.6876 0.60922
2 0.8766 0.4179 0.56711  0.8632 0.4327 0.57737  0.8689 0.387 0.54922
Average 0.81267 0.52154 0.58755  0.78807  0.5107 0.59053  0.79294  0.50857  0.6029
Valve

0 0.5599 0.5498 0.52632  0.564 0.5305 0.52185  0.5346 0.5224 0.5129
1 0.5188 0.5393 0.50053  0.5277 0.5314 0.50343 05155 0.5315 0.50237
2 0.5286 0.4699 0.49422  0.5494 0.4794 0.49685  0.5659 0.4973 0.49843
Average 0.53577  0.51967 0.50702  0.54704  0.51377 0.50737 0.53867 0.51707  0.50457

Average overall  0.67051  0.55648  0.56048  0.65063  0.54207  0.54815 0.64223  0.57524  0.55269
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Table 2. Percentage improvements in scores on development dataset (best mean values are highlighted)
(a) inverse Mel scale, combination maximum, and concatenated; and (b) combination average and

combination minimum

(a)
Inverse-Mel scale (AUC) Combination maximum (AUC) Concatenated (AUC)
Section source  target partial source target partial source  target partial
Bearing
0 1.99 14.34  -3.58 -3.31 091 -0.83 -10.16  3.31 -2.7
1 -26.25  37.16 -9.26 4.66 9.4 10.08 -7.14 10.35 4.56
2 -9.06 -549  0.86 8.97 2.05 5.39 16.75 16.7 13.69
Average -12.69 1527 -4.09 3.26 4.02 5.02 -1.78 9.94 5.25
Fan
0 -5.69 9.19 -0.18 243 -0.97 0.14 1.06 2.69 -0.36
1 -5.71 -4.18  -2.6 8.81 -4.37 3 -4.7 3.96 -0.61
2 -0.42 -8.21 -9.82 16.03 -3.99 2.56 -3.08 -15.31  -2.86
Average -3.89 277 -4.38 9.09 -3.39 1.87 -2.17 -4.87 -1.34
Gearbox
0 7.81 16.01 4.08 -7.17 6.5 -0.48 0.87 5.34 -4.04
1 3.96 7.55 -1.43 -0.1 -1.66 -3.99 -0.08 2.92 1.14
2 4.71 4.61 7.04 -3.36 -0.52 -1.5 1.26 3.01 -0.05
Average 5.44 9.45 3.45 -3.52 1.56 -1.9 0.72 3.79 -1.08
Slider
0 -6.92 7.17 10.39 498 4.63 -0.98 0.74 3.42 2.98
1 13.37 1623  1.37 -0.9 -6.28 1.27 9.45 12.54 3.67
2 1.15 11.85 4.66 1.49 -11.26  2.16 0.66 8.1 5.69
Average 1.94 1152 571 1.99 -3.34 -0.64 3.23 7.79 4.06
Valve
0 10.79 6.26 -2.51 -3.94 -2.29 -0.96 3.54 6.1 0.31
1 10.49 12.01 -1.16 2.5 -4.33 -1 -1.32 1.51 -0.11
2 13.58 13.26  0.64 8.64 -0.89 -1.23 1.91 6.27 0.06
Average 11.6 10.38  -1.04 231 -2.24 -1.06 14 4.52 0.09
Average over all machines  0.37 9.06 0.02 2.71 -0.4 0.62 0.34 442 1.34
(b)
Combination average (AUC)  Combination minimum (AUC)
Section source  target partial source  target partial
Bearing
0 -9.91 1.49 -1.46 2.06 12.44 -3.12
1 -2.33 14.17 5.14 -19.9 17.38 1.4
2 5.57 4.54 -6.04 5 1.46 -6.49
Average -2.66 6.58 -0.69 -6.31 10.47 -2.67
Fan
0 0.36 10.94 0.32 -18.85  28.63 0.32
1 -4.53 -1.32 -1.07 -3.11 -12.17  0.66
2 -4.91 -7.32 -4.41 2745 45 -5.46
Average -2.98 -1.04 -1.81 -16.85  0.98 -1.67
Gearbox
0 -23.9 -11.03  -18.79 -1.13 11.13 -6.74
1 -6.71 -6 -2.22 1.58 2.11 -1.92
2 -1.14 2.38 2.44 6.25 0.9 1.28
Average -10.04  -4.82 -6.35 2.46 4.8 -2.48
Slider
0 -1.91 1.87 3.66 -2.65 17.43 5.15
1 3.73 4.79 2.64 59 38.38 13.04
2 -0.89 11.93 7.61 -0.23 0.11 2.36
Average 0.11 5.55 4.59 0.73 1999  6.78
Valve
0 4.29 2.38 -0.56 -1.15 0.82 -2.26
1 0.39 0.02 0.48 -1.95 0.04 0.27
2 5.92 8.42 0.59 9.1 12.47 0.91
Average 353 3.33 0.16 1.95 3.99 -0.4
Average over all machines  -2.64 1.71 -0.9 -3.9 7.94 -0.08
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Table 3. AUC and pAUC scores of all machines on evaluation dataset (best values are highlighted)
Harmonic mean over all machine types, sections, and domains  Official score

Mel scale AUC 0.476997654 0.485524897
pAUC 0.503527942

Inverse-Mel scale AUC 0.476953026 0.487278196
pAUC 0.509330358

Combination maximum  AUC 0.490115307 0.495681532
pAUC 0.507202091

Concatenated AUC 0.475036924 0.485275108
pAUC 0.507135059

Combination average AUC 0.46975013 0.481373758
pAUC 0.506436574

Combination minimum  AUC 0.475282691 0.486243539
pAUC 0.509755228

Table 4. Percentage improvements in scores on evaluation dataset (best mean values are highlighted)
Harmonic mean over all machine types, sections, and domains  Official score

Inverse-Mel scale AUC -0.01 0.37
pAUC 1.16

Combination Maximum  AUC 2.76 2.1
pAUC 0.73

Concatenated AUC -0.42 -0.06
pAUC 0.72

Combination Average AUC -1.52 -0.86
pAUC 0.58

Combination Minimum  AUC -0.36 0.15
pAUC 1.24

Use of plain inverse-Mel scale spectrograms has enhanced the target domain AUC in all machines,
except for the fan machine. The most significant improvement, approximately 37%, is noted in the target
domain AUC for the type 2 domain shift condition of the bearing machine. On average, there is about a 9%
increase in the target domain AUC across all machines. Experiments conducted under various domain shift
conditions show that the target domain AUC improves within a range of 5-36% for all machines, excluding the
fan machine. Commonly occurring domain shifts—such as changes in microphone location (bearing machine
section 2), varying loads (gearbox machine section 2), fluctuations in operational voltages (gearbox machine
section 1), differences in operational speeds (bearing machine section 1), variations in operational velocity
(slide rail machine section 1), changes in operational acceleration (slide rail machine section 2), differing
operational patterns (valve machine section 1), and the mixing of various factory noises at different indexes
(slide rail machine section 3)—are effectively identified by inverse-Mel scales. These improvements highlight
the effectiveness of the inverse-Mel scale in accurately detecting operational and environmental domain shifts
commonly encountered in IMS.

Use of plain inverse-Mel scale spectrograms has also improved the source domain AUC and pAUC
in gearbox, slide rail, and valve machines. An average improvement of approximately 6% and 3% in source
domain AUC and pAUC, respectively, is observed across the above three machines. These improvements prove
the supremacy of the inverse-Mel scale in the detection of anomalous behavior from IMS.

Combinational maximum spectrograms are observed to enhance target domain AUC and pAUC scores
in both the bearing and fan machines. Use of plain inverse-Mel scale spectrograms resulted in poor perfor-
mance for these machines. This is due to the fact that bearing and fan machines produce a low level of sound
energy, with the emitted energy primarily concentrated in the low-frequency regions. Nevertheless, the use
of combinational maximum spectrograms has demonstrated improved detection accuracy. On average, there
is an improvement of approximately 6% in source domain AUC and 4% in pAUC across both machines.
Additionally, concatenated spectrograms are observed to enhance pAUC scores in bearing, slide rail, and valve
machines, yielding an average improvement of around 3% in pAUC across these three machines. These results
suggest that plain inverse-Mel scales may not always yield optimal results; however, the use of combinational
or concatenated spectrograms could improve the performance of the detection system.

Evaluations are also conducted on the evaluation dataset. The official DACSE 2022 Challenge evalu-
ator [27] is executed with the anomaly scores and decision results generated by the trained models. Harmonic
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means of AUC and pAUC scores calculated across all machine types, sections, and domains of evaluation
datasets are presented in Table 3] The official scores, as evaluated by the official evaluator, are listed in
Table [3| The official scores are utilized to rank the participating systems and teams. Table {4| lists the per-
centage improvements in all the aforementioned scores in comparison to the results obtained from Mel scale
spectrograms.

Among all the proposed methods, the combinational maximum spectrograms have been shown to
generate the best values of harmonic mean for both AUC and pAUC scores across all machine types, sections,
and domains. Improvements of approximately 3% in AUC scores and 1% in pAUC scores are observed. The
official score for the combinational maximum spectrograms indicates an improvement of about 2% compared
to the official score of Mel scale spectrograms. This enhanced score results in a rank of 21% in the official
ranking released by the DCASE Challenge 2022 Task 2 [[7]. This ranking is three positions higher than that of
the baseline system.

4. CONCLUSION

In this work, inverse-Mel scales are used to capture the energy present in the high frequencies of
IMS. This approach captures the information neglected by standard Mel scales. An autoencoder employing
inverse-Mel scales, as well as the concatenation and combination of Mel and inverse-Mel scale spectrograms
as front-end features, is implemented for AAD in industrial machines. Experiments are conducted on all
machines in the MIMII DG datasets. The use of inverse-Mel scales, along with combinational maximum and
concatenated spectrograms, has been shown to enhance source domain AUC, target domain AUC, and pAUC
scores by 8%, 9%, and 2%, respectively, across all machines. The improvement in target domain AUC is
particularly significant as it demonstrates the effectiveness of the proposed method in identifying challenging
operational and environmental domain shifts. The higher ranking awarded by the official challenge evaluator in
the evaluation datasets reflects the system’s capability to effectively capture domain shifts. The results indicate
that IMS contain a considerable amount of energy in higher frequency ranges that standard Mel scales fail
to detect. Inverse-Mel scales are more efficient in capturing these high-frequency components and are hence
advised to be used in AAD for industrial machines.
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