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 This paper presents a new algorithm for building neural network models that 

automatically selects the most important features and parameters while 

improving prediction accuracy. Traditional neural networks often use all 

available input parameters, leading to complex models that are slow to train 

and prone to overfitting. The proposed algorithm addresses this challenge by 

automatically identifying and retaining only the most significant parameters 

during training, resulting in simpler, faster, and more accurate models. We 

demonstrate the practical benefits of the proposed algorithm through two 

real-world applications: stock market forecasting using the Wilshire index 

and business profitability prediction based on company financial data. The 

results show significant improvements over conventional methods: models 

use fewer parameters–creating simpler, more interpretable solutions–achieve 

better prediction accuracy, and require less training time. These advantages 

make the algorithm particularly valuable for business applications where 

model simplicity, speed, and accuracy are crucial. The method is especially 

beneficial for organizations with limited computational resources or that 

require fast model deployment. By automatically selecting the most relevant 

features, it reduces the need for manual feature engineering and helps 

practitioners build more efficient predictive models without requiring deep 

technical expertise in neural network optimization. 
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1. INTRODUCTION 

Machine learning models, particularly neural networks, face a fundamental challenge known as 

overfitting-the phenomenon where a model learns the training data too closely, including its noise and 

specific patterns, resulting in poor performance when applied to new, unseen data. This problem becomes 

especially pronounced as models grow in complexity and when training data is limited relative to the number 

of model parameters. Regularization emerges as a critical solution to address overfitting by constraining 

model complexity and encouraging simpler, more generalizable solutions. The core principle of 

regularization is to add constraints or penalties that prevent the model from becoming overly complex, 

thereby improving its ability to perform well on new data. This concept represents a trade-off between fitting 

the training data perfectly and maintaining the model's ability to generalize to unseen examples. 

Various regularization approaches have been developed to tackle this challenge [1]. These methods 

can be broadly categorized into several types: data-based techniques such as data augmentation that increase 

https://creativecommons.org/licenses/by-sa/4.0/


                ISSN: 2252-8938 

Int J Artif Intell, Vol. 14, No. 5, October 2025: 3781-3789 

3782 

training set diversity through modifications like adding Gaussian noise [2] or geometric transformations; 

architectural approaches including dropout [3] which randomly deactivates neurons during training; 

optimization strategies like early stopping based on validation performance [4]; and penalty-based methods 

that modify the loss function directly. Among penalty-based regularization techniques, L1 and L2 

regularization have gained particular prominence due to their mathematical elegance and practical 

effectiveness. L2 regularization (also known as ridge regression) adds a penalty proportional to the sum of 

squared weights, encouraging smaller weight values and smoother solutions. L1 regularization, introduced by 

Tibshirani [5] as the least absolute shrinkage and selection operator (LASSO) method, applies a penalty 

proportional to the sum of absolute weight values. The distinguishing characteristic of L1 regularization lies 

in its ability to drive some weights to exactly zero, effectively performing automatic feature selection. This 

property makes L1 regularization particularly valuable in scenarios where identifying the most relevant 

features is as important as achieving good predictive performance. In contrast, L2 regularization typically 

shrinks weights toward zero without eliminating them entirely. Hybrid approaches like elasticNet [6] 

combine both penalties, while variants such as L0 regularization [7] and L1/2 regularization [8] offer 

different sparsity-inducing properties. 

The practical applications of L1 regularization demonstrate its significance across various domains. 

In financial modeling [9], L1/2 regularization has been successfully applied to neural networks for predicting 

financial distress, enabling automatic selection of the most significant financial and non-financial variables 

from large feature sets. Similarly, in credit risk assessment [10], L1 regularization helped eliminate redundant 

information in deep neural networks, significantly improving forecasting performance. Medical applications 

[11], image recognition tasks [12], [13], and high-dimensional biological data analysis have all benefited 

from the feature selection capabilities of L1 regularization.  

Despite these advantages, implementing L1 regularization in neural network training presents 

significant computational challenges. The absolute value function in the L1 penalty term is non-differentiable 

at zero, making standard gradient-based optimization methods problematic. Existing approaches include 

heuristic methods that exclude parameters based on their contribution ratios [14], smoothing techniques using 

piecewise polynomial approximations [15], and coordinate descent algorithms with cross-validation [16]. 

However, these methods often suffer from computational inefficiency, convergence difficulties, or require 

extensive hyperparameter tuning. 

The motivation for this research stems from the need to overcome these computational barriers 

while preserving the valuable feature selection properties of L1 regularization. Current methods either 

compromise on the exactness of the L1 penalty or require computationally expensive procedures that limit 

their practical applicability, especially for large-scale neural networks. This study addresses these limitations 

by proposing a novel optimization approach that reformulates the L1-regularized neural network training 

problem as an inverse single-point problem. Our contribution lies in developing a computationally efficient 

algorithm that maintains the theoretical properties of L1 regularization. The practical significance of this 

work extends to applications requiring both high predictive accuracy and model interpretability, including 

medical diagnosis, financial modeling, and scientific research where understanding feature importance is 

crucial for decision-making. 

 

 

2. MATERIALS AND METHOD 

This section presents the theoretical foundation and methodological framework for the study.  

The first component covers neural network architecture and L1 regularization techniques for feature selection 

and sparsity promotion. The second component details a novel training algorithm based on constrained 

optimization principles with selective weight update mechanisms. 

 

2.1.  Neural network 

A neural network is a computational model inspired by the way biological neural networks process 

information [17]. At its core, a neural network consists of interconnected processing units called neurons or 

nodes, organized in layers that transform input data into meaningful outputs through learned mathematical 

operations. The fundamental architecture comprises three main components: an input layer that receives data, 

one or more hidden layers that perform intermediate computations, and an output layer that produces final 

predictions Figure 1. Each connection between neurons has an associated weight that determines the strength 

and direction of information flow. The network learns by adjusting these weights during training to minimize 

prediction errors. 

For mathematical formulation, consider input data X with dimensions N×M∈ℝ, where N is the number 

of observations, and M is the number of features. The actual output variable Y has dimension N×1. The network 

processes information through successive transformations. The hidden layer values are computed as: 
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𝑙 = 𝑓1(𝑋 ⋅ 𝑤0)  

 

where w0 are the weights of the first layer, f1 is the activation function of the first layer. Activation functions are 

crucial components that enable neural networks to capture complex, non-linear relationships in data. 

Based on the values of neurons of the hidden layer l, the output of the neural network is calculated 

using the formula: 
 

𝑧 = 𝑓2(𝑙 ⋅ 𝑤1)  

 

where w1 are the weights connecting the hidden layer to the output layer, and f2 is the activation function of the 

output layer. Bias terms are incorporated by adding columns of ones to both 𝑋 and l matrices, providing 

additional flexibility in model fitting. 

The adjustment of the network’s weights is performed using optimization algorithms, typically based 

on gradient descent. The function to be optimized is the error function 𝐽, which reflects the deviation of 

predicted values from actual values, as defined in (1): 
 

𝐽(𝑤) = ∑ (𝑦𝑖 − 𝑧𝑖)
2𝑁

𝑖=1  (1) 
 

where y is the vector of actual output values; z is the vector of predicted values; and N is the number of 

observations.  

In classical gradient descent, after a forward pass, a backward pass is executed to compute gradients 

used for updating weights (𝑓′ is the derivative of the activation function). Thus, the error at the output layer 

is calculated as:  
 

𝑧𝑒𝑟𝑟𝑜𝑟 = 𝑧 − 𝑦  
 

𝑧𝑑𝑒𝑙𝑡𝑎 = 𝑧𝑒𝑟𝑟𝑜𝑟 ⊙ 𝑓2
′(𝑧)  

 

where ⊙ is the element-wise multiplication. 

The error at the hidden layer can be defined as:  
 

𝑙𝑒𝑟𝑟𝑜𝑟 = 𝑧𝑑𝑒𝑙𝑡𝑎 ⋅ 𝑤1
𝑇  

 

𝑙𝑑𝑒𝑙𝑡𝑎 = 𝑙𝑒𝑟𝑟𝑜𝑟 ⊙𝑓1
′(𝑙)  

 

Consequently, the weight updates for the first and second layers are performed as (2):  
 

𝑤0 = 𝑤0 − 𝜂 ⋅ 𝑋𝑇𝑙𝑑𝑒𝑙𝑡𝑎  

𝑤1 = 𝑤1 − 𝜂 ⋅ 𝑙𝑇𝑧𝑑𝑒𝑙𝑡𝑎 (2) 
 

where  is the learning rate.  

The L1 regularization technique can be formulated using the Lagrangian approach, which 

transforms the constrained optimization problem into an unconstrained form. This formulation introduces the 

regularization parameter λ that controls the trade-off between model fitting accuracy and sparsity, allowing 

practitioners to adjust the level of feature selection according to their specific requirements. The optimized 

function (1) with L1 regularization in Lagrangian form can be represented as (3):  
 

𝐽(𝑤) = 𝐽(𝑤) + 𝜆‖𝑤‖1 (3) 
 

 

 
 

Figure 1. Neural network structure 
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Graphically, the regularization term takes on a diamond shape, which encourages some weight 

coefficients to become zero, as the minimum is often reached at its corners (Figure 2). Figure 2 illustrates the 

geometric interpretation of L1 regularization in a two-dimensional parameter space, where the diamond-

shaped constraint region (shown in dark blue) represents the L1 penalty term ||w||₁ ≤ t for some threshold t. 

The elliptical contours (shown in green and light blue) represent the iso-lines of the error function J(w), with 

the innermost contour indicating the unconstrained minimum of the loss function. The optimal solution under 

L1 regularization occurs at the point where the smallest error function contour touches the diamond-shaped 

constraint region. Due to the sharp corners of the diamond constraint, this intersection frequently occurs at 

the axes (where one parameter equals zero), demonstrating how L1 regularization naturally produces sparse 

solutions by setting some coefficients to exactly zero. 

 

 

 
 

Figure 2. Graphical representation of the problem 

 

 

2.2.  Neural network training algorithm 

The proposed neural network training algorithm is based on reformulating the minimization problem 

of function (3) into a constrained optimization problem. This reformulation enables the application of 

methods for solving inverse single-point problems [18], [19] to the neural network learning process. In the 

reformulated problem, the sum of the absolute values of the parameters is minimized while the training error 

is constrained to a specified target value, as defined in (4): 

 
‖𝑤‖1 → 𝑚𝑖𝑛  

𝐽(𝑤) = 𝐽∗ (4) 

 

where 𝐽∗ is the target value of the constraint function. 

The solution approach involves iteratively updating arguments according to the following rule:  

at each iteration, select an argument for which the absolute value of the partial derivative of the constraint 

function is maximized, then adjust its value using gradient descent [18], [19]. The stopping conditions for 

iterations include reaching the target value of the constraint function with a specified accuracy or lack of 

improvement in solutions, as well as reaching a predetermined number of iterations. There may be cases 

where the target value is not achieved during problem-solving. In such instances, values obtained through 

other stopping criteria are considered as solutions, being as close as possible to the target value of the 

constraint function with this search strategy. In this study, the target value 𝐽∗ is assumed to be a small 

arbitrary number, under the assumption that this value will not be reached. This assumption is implemented 

by excluding from the stopping rules achieving the target value of the constraint function with specified 

accuracy. 

This approach ensures differentiability of the objective function and does not require tuning of the 

regularization parameter. It is also worth noting that the initial values of the weight coefficients are set to 

zero, rather than being generated randomly as in well-known algorithms. For each weight coefficient w,  

an additional value u is defined to indicate its applicability in calculations. This feature can take two values:  

0 or 1, reflecting whether the corresponding weight coefficient can be modified in the current iteration. 

Modification is excluded if adjusting the weight coefficient in the previous iteration resulted in a worsening 

of the optimized error function. 

The proposed training algorithm incorporates a selective weight update mechanism based on 

gradient magnitude. This approach aims to improve convergence efficiency by preventing unnecessary 

updates of weights. The mechanism dynamically adjusts weight modification priorities during training, 

ensuring that computational resources are focused on the most beneficial parameter adjustments.  
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The algorithm for a single hidden layer will include the following steps:  

Step 1. Error function calculation: calculate the current error function value: Jprev=J(w) (1). 

Step 2. Gradient computation: calculate gradient values for all weight coefficients (2):  
 

𝑔0 = 𝑋𝑇𝑙𝑑𝑒𝑙𝑡𝑎  
 

𝑔1 = 𝑙𝑇𝑧𝑑𝑒𝑙𝑡𝑎  
 

Step 3. Selective weight update: determine the maximum value of the product between the gradient value and 

the applicable weight: 
 

𝑔𝑚𝑎𝑥 = 𝑚𝑎𝑥{|𝑔0| ⋅ 𝑢0, |𝑔1| ⋅ 𝑢1}  
 

If this maximum value corresponds to the weight coefficients connecting the hidden layer to the output layer 

(j is the index of the maximum element), then the weight coefficient of w1 is adjusted:  
 

𝑤∗
1𝑗 = 𝑤1𝑗 − 𝜂 ⋅ 𝑔1𝑗  

 

where  is the parameter defining the step of weight coefficient change. Otherwise, update the weight 

coefficient connecting the input layer to the intermediate layer:  
 

𝑤∗
0𝑗 = 𝑤0𝑗 − 𝜂 ⋅ 𝑔0𝑗  

 

Step 4. Performance evaluation and adaptation: calculate the new error function value: Jnew=J(w). If 

Jnew<Jprev, u values are set to 1 for all weight coefficients, w=w*, Jprev= Jnew. Go to step 2. Otherwise, the value 

u for the corresponding modified weight coefficient is set to zero: 𝑢0𝑗 = 0 (if 𝑤0𝑗 was changed) or 𝑢1𝑗 = 0 

(if 𝑤1𝑗  was changed). Go to step 2. 

Stopping criterion: either all values of u are equal to 0, or the specified number of iterations has been completed. 
 
 

3. RESULTS AND DISCUSSION 

This section presents the empirical validation of the proposed neural network training algorithm 

through computational experiments. The evaluation is structured into two main parts to systematically 

demonstrate the algorithm's effectiveness across different network architectures and application domains. 

First, we examine the algorithm's performance on single-layer networks using financial time series data as 

presented in section 3.1. This analysis focuses on feature selection capabilities and prediction accuracy in 

forecasting stock market indices. Second, we investigate the algorithm's application to neural networks with 

hidden layers using enterprise financial data as discussed in section 3.2, emphasizing parameter reduction. 

For each experimental setting, we compare proposed algorithm against established baseline approaches, 

including standard adaptive moment estimation (Adam) optimization with various L1 regularization 

parameters and dropout techniques. The reliability of our results is ensured through rigorous experimental 

design, comparison with well-established optimization methods under identical conditions, and use of 

different activation functions and network configurations. 

The proposed algorithm was implemented in Python using native NumPy operations for matrix 

computations and gradient calculations, while the optimization method Adam was implemented in Python 

using the Keras library. Additionally, we implemented L1 regularization techniques and hyperparameter 

optimization using GridSearchCV from the scikit-learn library [20] in the Adam method. GridSearchCV 

performs search over specified parameter values, evaluating each combination through cross-validation to 

identify optimal hyperparameters including the number of training epochs and batch size. This systematic 

approach ensures fair comparison between proposed algorithm and conventional regularization methods by 

selecting the best possible configuration for each approach. 
 

3.1.  Single-layer network 

To evaluate the feature selection capabilities of proposed algorithm we conducted experiments using 

financial time series data from the Wilshire 2500 total market index. This dataset represents a real-world 

scenario where identifying the most relevant historical values for prediction is crucial for practical 

applications. The experimental setup involved predicting future index values based on a 40-day historical 

window, using daily data from January 2021 to December 2023 (754 total observations, with the last 200 

observations reserved for testing). We deliberately chose this financial dataset because it exhibits the 

complex temporal dependencies and noise characteristics typical of real-world prediction problems, making 

it an appropriate testbed for evaluating feature selection methods. 
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The results, including mean squared error (MSE) and mean absolute error (MAE) for the test set, are 

presented in Table 1. Table 1 also lists the regularization parameter value , with the arctg used as the 

activation function of single-layer neural network. The proposed algorithm demonstrated superior 

performance compared to traditional L1 regularization approaches. While conventional L1 regularization 

(λ=0.01 to 1.0) failed to perform actual feature selection–retaining all 40 input features while only reducing 

coefficient magnitudes–the proposed algorithm successfully identified just 6 features that yielded better 

prediction accuracy. 

The results in Table 1 reveal several important findings. First, standard Adam optimization without 

regularization achieved MSE=4.39×10⁻⁵, while the proposed algorithm reduced this to MSE=2.48×10⁻⁶, 

representing an 18-fold improvement. Second, the computational efficiency was enhanced, reducing training 

time from 11.3 seconds to 0.43 seconds. This improvement stems from the algorithm's ability to eliminate 

irrelevant parameters during training rather than merely penalizing them. 
 

 

Table 1. Results of computational experiments based on the Wilshire 2500 index 
Method Number of selected features (p) MSE MAE Time (seconds) 

Adam, =0 40 4.39×10-5 0.0053 11.3 

Adam, =0.01 40 2.03×10-4 0.0103 12.8 

Adam, =0.5 40 0.0023 0.0105 12.8 

Adam, =1.0 40 0.0048 0.0101 7.45 

Proposed algorithm, =0.1 6 2.48×10-6 0.0013 0.43 

 
 

The experimental results demonstrate the effectiveness of the proposed algorithm in both prediction 

accuracy and computational performance. Figure 3 demonstrates the practical prediction quality, showing 

close alignment between actual and predicted values on the test set. The analysis across different activation 

functions Figure 4 confirms the algorithm's robustness, consistently achieving lower error rates than baseline 

method across various function types, including specialized financial modeling functions like cloglogm and 

tanh [21]. The number of selected features using the proposed algorithm varied from 2 to 10 for different 

activation functions, allowing for higher accuracy. 
 

 

 
 

Figure 3. Actual and predicted index values 
 
 

 
 

Figure 4. MSE values by activation function 
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3.2.  Neural network with a single hidden layer 

The second phase of our evaluation examined the algorithm's performance on more complex 

architectures with a single hidden layer [22]–[24] using enterprise financial data. We utilized a 

comprehensive dataset of 551 Russian enterprises with revenues exceeding 100 million rubles, spanning 

2017-2020 [25]. The training dataset contains information about these 551 enterprises for 2017–2019, while 

the test dataset includes data for the same enterprises for 2020. The prediction task–forecasting enterprise 

profitability based on key financial indicators (liquidity ratio, fixed asset share, financial leverage, and asset 

turnover). The experimental design compared networks with 2 and 16 hidden neurons to examine how 

proposed algorithm performs across different complexity levels. The choice of sigmoid activation for hidden 

layers and linear activation for output follows established practices in financial modeling, ensuring our 

results are comparable to standard approaches in this domain. 

The results in Table 2 reveal evidence of the algorithm's effectiveness. For the 2-neuron network, 

proposed algorithm reduced parameters from 13 to 8 while improving MSE from 174.79 to 156.28 and MAE 

from 8.54 to 8.06. More significantly, for the 16-neuron network, the algorithm achieved dramatic parameter 

reduction from 97 to 13 parameters while maintaining comparable accuracy (MSE=155.01 vs. 156.00), 

demonstrating effective model simplification without performance degradation. 

Particularly noteworthy is the algorithms superiority over dropout regularization, a widely-used 

technique for preventing overfitting. While dropout with 20% neuron elimination yielded MSE=195.88, proposed 

algorithm achieved MSE=155.01 with substantial parameter reduction, indicating more effective regularization 

through parameter selection rather than random elimination. The computational efficiency gains (training time 

reduced from 32.8 to 9.1 seconds) further demonstrate practical advantages for large-scale applications. 

Figure 5 illustrates the algorithm's sensitivity to the η parameter, showing optimal performance at 

η=10⁻⁴, where an effective balance between parameter selection and accuracy is achieved. At =10-2, 

parameter selection was not performed because the optimized function yielded higher values when the 

arguments changed significantly compared to their zero values. For =10-6, there was a slow decrease in the 

optimized function due to the use of a small step size. The consistency of improvements across both simple 

and complex architectures validates the algorithm's general applicability and suggests its potential for broader 

implementation in neural network optimization tasks where parameter efficiency and model interpretability 

are valued alongside predictive performance. 
 

 

Table 2. Results of neural network modeling with a hidden layer 
Method Number of neurons in 

a hidden layer 
Number of non-zero 

parameters 
MSE MAE Time 

(seconds) 

Adam, =0 2 13 174.79 8.54 33.2 

Adam, =0.01 2 13 176.54 8.54 29.9 

Adam, =0.5 2 13 182.19 8.54 29.2 

Adam, =1.0 2 13 196.53 8.89 28.5 

Proposed algorithm, =0.0001 2 8 156.28 8.06 0.6 

Adam, =0 16 97 156 8.08 25.8 

Adam, =0.01 16 97 156.99 8.09 22.2 

Adam, =0.5 16 97 178.7 8.34 22.9 

Adam, =1.0 16 97 193.43 8.6 23.7 

Adam, dropout (0.2) 16 97 195.88 8.7 32.8 

Proposed algorithm, =0.0001 16 13 155.01 8.08 9.1 

 

 

  
 

Figure 5. Changes in MSE and the number of non-zero parameters with varying  
 
 

4. CONCLUSION 

An algorithm has been developed for training a neural network with L1 regularization, based on 

reformulating the optimization problem of the loss function as an inverse single-point problem while 
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minimizing the sum of modules of arguments. Experiments were conducted with two test datasets, leading to 

the following conclusions. The use of L1 regularization, implemented in the Keras library, did not perform 

parameter selection in the examined cases; however, it did reduce the absolute values of the weight 

coefficients. The proposed algorithm successfully performed feature selection for the first dataset. 

Experiments on the second dataset demonstrated that the algorithm effectively zeroed out the weight 

coefficients, resulting in a reduction in the number of adjustable parameters. This, in turn, simplified the 

network architecture and improved model accuracy. As a result, the studied examples achieved faster 

parameter tuning and lower MSE and MAE values. Another advantage of this method is that it eliminates the 

need for generating random weight values, thus removing its stochastic nature. This ensures that the method 

will yield identical results across multiple runs, providing stability and reproducibility of the obtained data. 

However, the method has some drawbacks, including high sensitivity to the choice of the parameter . If an 

incorrect value is selected, all weight coefficients may become zero, as their adjustment would lead to worse 

values of the optimized function. For this reason, the use of the proposed algorithm is complicated for certain 

activation functions, such as sincos activation function. Future research will focus on developing and 

investigating a hybrid algorithm that synthesizes the proposed algorithm with existing neural network 

training methods. 
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