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 This study explores the critical challenge of harmonic distortion compliance 

in reverse osmosis (RO) desalination systems, with a focus on aligning with 

international standards, specifically IEC 61000, IEEE 519, and EN 50160. 

High-power equipment, particularly high-pressure pumps (HPP), introduces 

significant harmonic distortions, threatening power quality and operational 

reliability. To address this issue, we integrated advanced machine learning 

(ML) algorithms, namely decision tree (DT), random forest (RF), support 

vector machine (SVM), and multi-layer perceptron (MLP) to assess 

harmonic compliance and predict total harmonic distortion (THD) under 

four operational scenarios. All data used for training and testing were 

obtained from real-time measurements taken at a large-scale desalination 

plant using a power quality analyzer (QUALISTAR CA 8336), which 

guarantees the practical relevance of the analysis. The models were trained 

on harmonic order and amplitude data and evaluated using accuracy, 

precision, recall, and F1-score metrics. Among the models, MLP 

demonstrated superior performance, achieving an accuracy of 99.11% and 

an F1-score of 98.9%, making it a robust tool for harmonic compliance 

assessment. SVM and RF also showed commendable results, while DT 

proved effective for basic analysis. This research underscores the potential 

of AI-driven approaches in mitigating harmonic-related challenges, 

optimizing power quality, and enhancing operational efficiency in RO 

plants. These findings offer a pathway toward more reliable and energy-

efficient industrial operations. 
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1. INTRODUCTION 

The rise of reverse osmosis (RO) desalination plants represents a significant trend in engineering 

over the last few decades, addressing the increasing demand for freshwater. By 2022, operational seawater 

desalination plants worldwide exceeded 21,000, nearly double the figure recorded a decade ago [1]. 

Centrifugal high-pressure pumps (HPP) are critical components in RO systems, and their performance, such 

as operating pressure, flow rate, feed pressure, and energy efficiency, directly impacts freshwater production 

and the overall reliability of the desalination process [2]. These pumps, or pump-motor units, are typically 

powered by electric motors, often three-phase or single-phase induction motors, coupled with static power 

https://creativecommons.org/licenses/by-sa/4.0/
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converters like variable frequency drives (VFD) to regulate speed and pressure [3]. Due to the nonlinear 

nature of HPP, harmonic phenomena are frequently observed in electrical systems [4]. The severity of these 

harmonic disturbances in current signals is quantified by the total harmonic distortion of current (THDi). 

When harmonic currents circulate through a finite system impedance, the vector sum of all individual voltage 

drops leads to an increase in the total harmonic distortion of voltage (THDu) [5]. 

The rapid advancement of artificial intelligence (AI) is transforming how we monitor and optimize 

complex systems. Machine learning (ML), a subset of AI, has demonstrated remarkable success in modeling 

nonlinear systems across diverse fields, including healthcare, sports, industry, environmental sciences, and 

water treatment [6]–[15]. AI techniques hold immense potential for tackling complex, nonlinear challenges, 

particularly in studies related to water treatment processes and beyond. 

Over the past few decades, the issue of total harmonic distortion (THD) has become a critical 

concern in industrial power systems, particularly in RO desalination plants. The increasing reliance on  

high-power equipment, such as HPP, has led to significant harmonic distortions, adversely affecting power 

quality and operational efficiency [16]. Ensuring compliance with international standards like IEC 61000, 

IEEE 519, and EN 50160 is essential to mitigate these challenges and maintain reliable plant operations  

[17], [18]. Recent studies have emphasized the significant impact of harmonics in industrial systems, where 

the increasing use of non-linear loads and high-power equipment has led to elevated levels of THD. These 

distortions can severely affect power quality, causing issues such as equipment overheating, reduced 

efficiency, and premature failure of electrical components. To address these challenges, researchers have 

focused on developing advanced mitigation techniques, including active and passive filters, adaptive control 

strategies, and AI-based solutions. These approaches aim to reduce harmonic distortions and ensure 

compliance with international standards, such as IEEE 519 and IEC 61000, which set strict limits on THD 

levels to maintain system reliability and performance [19], [20]. Traditional harmonic mitigation methods, 

such as passive and active filters, require manual adjustments and struggle to adapt to dynamic operating 

conditions [21]. Traditional monitoring systems also rely on fixed thresholds, making them ineffective in 

detecting complex harmonic interactions in real time. 

To address the challenges of THD in RO plants, this study leverages AI to automate the 

classification and prediction of harmonic compliance, ensuring adherence to IEC 61000, IEEE 519, and  

EN 50160 standards. Using advanced ML techniques such as decision tree (DT), random forest (RF), support 

vector machine (SVM), and multi-layer perceptron (MLP), we analyze the impact of harmonic distortions on 

plant performance and propose mitigation strategies. This study introduces a novel AI-based framework 

specifically tailored to the dynamics of RO desalination systems, which have not been extensively explored 

in the context of harmonic compliance. This AI-driven framework enhances real-time monitoring, improves 

predictive accuracy, and enables adaptive control strategies, optimizing power quality and preventing 

harmonic-related failures in industrial RO plants. Ultimately, this research highlights the potential of AI in 

maintaining system reliability and advancing efficient energy management in desalination facilities. 
 
 

2. METHOD 

2.1.  Electrical system under study 

The RO system is powered through a high-voltage/low-voltage (HV/LV) transformer, supported by 

a backup transformer, each with a capacity of 1,600 kVA. Additionally, a 40 kVAr self-anti-harmonic (SAH) 

vacuum compensation system is connected to the grid via an 80 A circuit breaker installed on the low-voltage 

side of each HV/LV transformer. The electrical network supplies four HPP (in a 3+1 configuration), which 

are the plant's primary energy consumers. Each pump is driven by a 450 kW VFD motor. Figure 1 provides a 

schematic diagram of the electrical system supplying the HHP in a desalination plant in Morocco. 

Complementing this, Table 1 presents the technical characteristics of the 1,600 kVA transformers used in the 

RO system, detailing key parameters such as rated power, voltage, current, losses, and winding configuration. 
 

2.2.  International norms 

The normative analysis evaluates the compliance of the RO plant’s electrical system with 

international standards for harmonic distortion. This section examines the limits for voltage and current 

harmonics as defined by IEEE 519, IEC 61000, and EN 50160, ensuring the system operates within 

acceptable power quality thresholds. The analysis focuses on harmonic levels at both high-voltage (22 kV) 

and low-voltage (0.4 kV) sides of the transformer. 
 

2.2.1. IEEE 519 

The IEEE 519 standard applies to both high-voltage and low-voltage systems. The limits for voltage 

harmonics are determined according to Table 2. Since the transformer is supplied with 22 kV, the current 

harmonics must comply with the limits specified in Table 3 [19]. 
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Figure 1. Schematic diagram of the electrical system supplying HPP in the RO plant 

 

 

Table 1. Technical characteristics of the 1,600 kVA Transformers in the RO system 
Parameter Symbol Value Unit 

Rated power S 1,600 kVA 
Primary voltage UHV 22 kV 

Secondary voltage UBT 0.4 kV 

Rated primary current IHV 41.99 A 
Rated secondary current IBT 2309.4 A 

Short-circuit voltage* %Ucc 6±10% % 

Winding connection --- Dyn11 --- 
Tap changer --- ±2*2.5 % UHV 

Load losses* Pj 19 (+15%) kW 

No-load losses* Pv 2.6 (+15%) kW 

 

 

Table 2. Voltage harmonic limits (IEEE 519) 
Bus voltage V at PCC Individual harmonic (%) Total harmonic distortion (%) 

V≤1.0 KV 5.0 8.0 

1 KV<V≤69 KV 3.0 5.0 

69 KV<V≤161 KV 1.5 2.5 
161 KV<V 1.0 1.5a 

 

 

Table 3. Current harmonic limits for systems rated 120 V through 69 KV (IEEE 519) 
𝐈𝐒𝐂

𝐈𝐋

 
Maximum harmonic current distortion in percent of IL TDD required 

Individual harmonic order (odd harmonics)a, b 

3≤h<11 11≤h<17 17≤h<23 23≤h<35 35≤h<50 

<20c 4.0 2.0 1.5 0.6 0.3 5.0 

20<50 7.0 3.5 2.5 1.0 .05 8.0 

50<100 10.0 4.5 4.0 1.5 0.7 12.0 
100<1,000 12.0 5.5 5.0 2.0 1.0 15.0 

>1,000 15.0 7.0 6.0 2.5 1.4 20.0 
aEven harmonics are limited to 25% of the odd harmonic limits above. 
bCurrent distortions that result in a dc offset, e.g., half wave converters, are not allowed. 
cAll power generation equipment is limited to these values of current distortion, regardless of actual 

𝐈𝐒𝐂

𝐈𝐋
 

Where, ISC maximum short circuit current at PCC, and IL maximum demand load current  

 

 

2.2.2. IEC 61000 

The IEC 61000 standard addresses electromagnetic compatibility (EMC) in low-voltage systems.  

It recommends harmonic limits applicable to low and medium voltage systems. In most cases, it can also be 

applied to the input terminals of equipment supplied by low-voltage networks [22]. The voltage harmonic 

levels for each order are provided in Table 4, with a maximum THD of 8%. 
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Table 4. Harmonic voltage limits per IEC 61000-2-2 and 61000-2-12 standards 
Odd harmonics (Not multiple of 3) Odd harmonics (Multiple of 3) Even harmonics 

h Lh (%) h Lh (%) h Lh (%) 

5 6 3 5 2 2 

7 5 9 1.5 4 1 

11 3.5 15 0.4 6 0.5 
13 3 21 0.3 8 0.5 

17<h≤49 2.27·
17

h
− 0.27 21<h≤45 0.2 10<h≤50 0.25·

10

h
+ 0.25 

 

 

2.2.3. EN 50160 

The EN 50160 standard sets limits for voltage harmonic amplitudes in low-, medium-, and  

high-voltage networks under normal operating conditions [23]. These limits are designed to ensure the quality 

and reliability of the power supply, thereby reducing potential disturbances in electrical equipment.  

The individual harmonic voltage levels specified by this standard are presented in Table 5, which provides 

detailed values for both odd and even harmonics up to the 25th order. 
 

 

Table 2. Individual harmonic voltage values at supply terminals (orders up to 25, % of fundamental U1) 
Odd harmonics 

Even harmonics 
Not multiple of 3 Multiple of 3 

h Lh (%) h Lh (%) h Lh (%) 

5 6.0 3 5.0 2 2.0 
7 5.0 9 1.5 4 1.0 

11 3.5 15 0.5 6< h ≤24 0.5 

13 3.0 21 0.5   
17 2.0     

19 1.5     

23 1.5     
25 1.5     

 

 

2.3.  Data collection 

2.3.1. Measurement equipment 

The data for this study were collected using a high-precision power quality analyzer, the 

QUALISTAR CA 8336 from Chauvin Arnoux. The main features of this advanced power network analyzer 

are presented in Table 6. This device was installed to measure the levels of THDi and THDu on the  

high-voltage (22 kV) and low-voltage (0.4 kV) sides of the transformer feeding the RO system. The 

measurements were analyzed for the four operating scenarios of the RO system: i) scenario 1: 0 RO trains in 

operation; ii) scenario 2: 1 RO train in operation; iii) scenario 3: 2 RO trains in operation; and iv) scenario 4: 

3 RO trains in operation. 

The measurement campaign was conducted over the entire month of May 2024 (31 consecutive days). 

To minimize disruption to plant operations, data were collected for 1 full day under scenario 1, 1 full day 

under scenario 2, and 1 day under scenario 3. The remaining 28 days were dedicated to scenario 4, which 

reflects the plant’s typical operating conditions. Measurements were recorded every 5 minutes, resulting in a 

complete dataset of approximately 8,700 samples. This high-resolution and time-distributed dataset ensures 

statistical robustness for training and evaluating ML models under realistic operational conditions. For each 

operating scenario, the spectrum of maximum harmonic amplitudes for both voltage and current is recorded 

and compared against the relevant normative standards. 
 

 

Table 3. Key features of the QUALISTAR CA 8336 power quality analyzer 
Feature Specification 

Accuracy ±0.5% for voltage, ±1% for current 

Frequency range Measures harmonics up to the 50th order 
Data logging Real-time recording with high resolution 

Measurement parameters Voltage, current, power, energy, harmonics (up to 50th order), THD, power factor 

Compliance Meets IEC 61000-4-30 class A standards for power quality measurements 

 

 

2.3.2. Measured parameters 

To evaluate power quality, several indicators are commonly used to quantify the level of harmonic 

distortion in both current and voltage signals. 

‒ THDi calculated as the ratio between the sum of harmonic currents to the fundamental current. 
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𝑇𝐻𝐷𝑖 =
√∑ 𝐼ℎ

2𝐻
ℎ=2

𝐼1
× 100%  

 

Where, 𝐼ℎ represents the harmonic current of order h, 𝐼1 is the fundamental current (1st order) and H is 

the maximum harmonic order measured (e.g., 25). 

‒ THDu calculated as the ratio of the sum of the harmonic voltages to the fundamental voltage. 
 

𝑇𝐻𝐷𝑢 =
√∑ 𝑉ℎ

2𝐻
ℎ=2

𝑉1

× 100% 

 

Where, 𝑉ℎ represents the harmonic voltage of order h, 𝐼𝑉 is the fundamental voltage (1st order). 

‒ Harmonic amplitudes, the amplitudes of harmonic currents and voltages, represent the magnitude of 

each harmonic component relative to the fundamental. 
 

𝐼ℎ(%) =
𝐼ℎ

𝐼1
× 100%,  𝑉ℎ(%) =

𝑉ℎ

𝑉1
× 100% 

 

2.4.  Harmonic classification 

2.4.1. Classification process 

This section describes the methodology used for harmonic classification and presents the results for the 

four operating scenarios of the RO plant. Each harmonic was classified as “compliant” or “non-compliant” 

based on the following rule: 

‒ If the measured harmonic amplitude≤standard limit → “compliant”. 

‒ If the measured harmonic amplitude>standard limit → “non-compliant”. 

Among the 8,700 collected samples, approximately 51.3% belong to the compliant class and 48.7% to the 

non-compliant class. This near-even distribution was verified during data preprocessing. Therefore, no 

resampling techniques such as oversampling (e.g., SMOTE) or undersampling were required. 
 

2.4.2. Machine learning models for harmonic classification 

To automate the classification process, a DT, random forest (RF), SVM, and neural network (MLP) 

were trained on the harmonic data. These models used the harmonic order and measured amplitude as input 

features to predict the compliance status (“compliant” or “non-compliant”). To ensure model generalizability 

and avoid overfitting, a 70/15/15 split was applied to divide the dataset into training, validation, and testing 

sets, respectively. Additionally, a 5-fold cross-validation technique was employed during training to provide 

a robust estimation of model performance across different subsets of the data. Table 7 provides a clear and 

concise summary of the AI models used for harmonic classification and evaluation metrics. 
 
 

Table 4. ML models for harmonic classification 
Model Description Equation Reference Evaluation metrics 

DT A supervised learning algorithm that 
divides data into branches based on feature 

values, creating a tree-like model of 

decisions. 

Gini impurity = 1 − ∑ Pi
2n

i=1  

where 𝑃𝑖 is the probability of class i. 

[24] Accuracy=
TP + TN 

TP + FP + FN + TN
 

Recall=
TP  

TP +  FN 
 

Precision=
TP 

TP + FP 
 

F1score=
2 × Recall × Precision 

Recall + Precision
 

RF An ensemble of DT that improves 
accuracy and reduces overfitting by 

averaging the results of multiple trees. 

Prediction  

= mode(T1(x), T2(x), … , Tn(x))n 

Here, where Ti(x) represents the 

prediction of the i-th tree. 

[25] 

SVM A supervised learning model that finds the 
optimal hyperplane to separate data into 

classes, maximizing the margin between 

classes. 

F(x) = sign(w ⋅ x + b)  

Where w is the weight vector, x is 
the input, and bb is the bias. 

[26] 

MLP A deep learning model that uses layers of 

interconnected neurons to learn complex 

patterns in the data. 

y = 𝜎 ∑ 𝑤𝑖
n
i=1 𝑥𝑖 + 𝑏  

Where 𝜎 is the activation function, 

𝑤𝑖  are weights, 𝑥𝑖  are inputs, and b 

is the bias. 

[27] 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Analysis of voltage harmonics against applicable standards 

This section presents the normative analysis of THDu and THDi at high-voltage (22 kV) and  

low-voltage (0.4 kV) levels, measured in the RO plant under four operating scenarios. Figure 2 illustrates the 

variations in the maximum harmonic amplitudes across the four operating scenarios, corresponding to the 
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number of RO trains in service. The limits defined by IEC 61000, IEEE 519, and EN 50160 standards are 

overlaid on the measurements to assess compliance.  

Figure 2(a) displays the THDu under the four scenarios, that figure correspond to a specific 

operating condition. The harmonic spectrum and standard limits (IEC 61000, IEEE 519, EN 50160) are 

plotted to assess voltage distortion compliance. While all scenarios are within the IEC 61000 and EN 50160 

thresholds at 22 kV, certain harmonic orders, particularly the 5th, 7th, and 11th, exceed IEEE 519 

recommendations. At the 0.4 kV level, most values remain below the IEC limit, except for the 15th harmonic 

in scenarios 2 and 4, indicating non-compliance in these specific cases. Figure 2(b) presents the THDi results 

under the same four scenarios, that figure show current harmonic amplit. 
 

 

 
(a) 

 

 
(b) 

 

Figure 2. Evolution of maximum harmonic voltage amplitudes across different operating scenarios of the RO 

Plant at (a) high voltage (22 kV) and (b) low voltage (0.4 kV) levels 
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3.2.  Analysis of current harmonics against applicable standards 

Figure 3 illustrates the variations in THDi at high-voltage (22 kV) and low-voltage (0.4 kV) levels 

under four operating scenarios, compared to IEEE 519 limits. Significant harmonic amplitudes are observed at 

22 kV as shown in Figure 3(a), particularly for the 3rd, 5th, 7th, and 11th orders, with exceedances noted in 

scenarios 2 and 4. The highest THDi values occur at lower fundamental currents, highlighting an inverse 

relationship. At 0.4 kV, as shown in Figure 3(b), we observe that the 5ᵉ harmonic far exceeds the IEEE 519 limit 

in all scenarios, with maximum amplitudes reaching over 40%. The 3ᵉ and 7ᵉ harmonics are also significant, but 

remain below the limit in some cases. The harmonic distribution indicates high harmonic distortion, particularly 

marked in scenarios 2 and 4. These harmonic distortions can lead to overheating, increased vibration, and 

premature wear of the HPP, adversely affecting their reliability and overall performance. 

 

 

 
(a) 

 

 
(b) 

 

Figure 3. Evolution of maximum harmonic current amplitudes in different RO plant operating scenarios at  

(a) high voltage (22 kV) and (b) low voltage (0.4 kV) levels 
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3.3.  Machine learning-based classification of harmonic compliance 

The analysis of the figures effectively demonstrates harmonic variations, emphasizing the impact of 

excessive harmonic distortion on HPP performance in RO plants. Overheating, increased vibrations, and 

insulation degradation can lead to higher maintenance costs and unexpected failures, affecting operational 

reliability. To mitigate these issues, this study applies ML models for harmonic classification, automating 

compliance assessment against IEC 61000 and IEEE 519 standards. Four ML models were trained on 

harmonic data. Table 8 summarizes the performance of each model. The MLP achieved the highest accuracy 

(99.11%), proving to be the most effective model for precise classification. Its superior performance is 

attributed to a deep architecture with two hidden layers (64 and 32 neurons) and rectified linear unit (ReLU) 

activation, which allowed it to capture complex non-linear relationships between harmonic orders. Dropout 

regularization was also applied to prevent overfitting, while SVM (96.29%) and RF (96.0%) also 

demonstrated strong performance. DT, though slightly less accurate (92.5%), remains a viable option for 

simpler applications. Figure 4 illustrates the precision-recall (PR) curves for all four models. The MLP 

exhibits a near-perfect PR curve, maintaining high precision across a wide range of recall values. This 

highlights its robustness in correctly identifying harmonic compliance even in more uncertain prediction 

zones. SVM and RF models follow closely but show a slight drop in precision as recall increases, indicating a 

growing number of false positives under broader detection scopes. The DT, while performing adequately, 

presents a more pronounced decline in precision with increasing recall, confirming its relatively lower ability 

to generalize across diverse harmonic conditions. These results confirm that AI-driven approaches enhance 

real-time harmonic compliance monitoring, optimizing power quality and reducing the risk of equipment 

failures in desalination plants. 
 

 

Table 8. Performance comparison of ML models for harmonic compliance classification 
Model Accuracy (%) Precision (%) Recall (%) F1-score (%) 

DT 92.5 91.0 90.5 90.7 
RF 96.0 95.5 95.0 95.2 

SVM 96.29 96.0 95.8 95.9 

MLP 99.11 99.0 98.9 98.9 

 

 

 
 

Figure 1. Precision-recall curves of the four ML models for harmonic compliance classification 
 

 

3.4.  Discussion of the results 

The results of this study demonstrate the effectiveness of ML models in classifying harmonic 

compliance and predicting THD levels in RO desalination plants. The superior performance of the MLP 

model confirms its ability to capture complex, nonlinear relationships between harmonic orders thanks to its 

multilayer architecture and nonlinear activation functions. This makes it particularly effective in scenarios 

involving fluctuating loads and diverse harmonic profiles, as found in RO desalination plants. Compared to 

SVM and RF, which also performed well, MLP’s higher accuracy and F1-score underline its robustness for 

detailed harmonic compliance assessment. Moreover, the computational efficiency of the selected models, 

especially MLP and RF, enables their integration into industrial systems with moderate hardware, such as 

edge computing units or industrial PCs, ensuring suitability for real-time deployment [28]. This AI-based 

approach offers a scalable, proactive solution for monitoring and mitigating harmonic distortions in industrial 

environments. 
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4. CONCLUSION AND PERSPECTIVES 

This study highlights the effectiveness of ML models, particularly MLP, in analyzing harmonic 

compliance and predicting THD levels in RO desalination plants. The results demonstrate the potential of  

AI-driven approaches to ensure power quality and adherence to international standards like IEC 61000,  

IEEE 519, and EN 50160. Regarding computational efficiency, the MLP model demonstrates superior 

accuracy but requires higher inference time and computational resources due to its deeper architecture and 

dense parameter space. This may limit its applicability in highly time-constrained environments. However, 

the deployment remains feasible on industrial embedded systems with moderate computational power  

(e.g., industrial PCs supporting TensorFlow Lite or ONNX Runtime). Framework for platform independent 

ML model execution. In contrast, simpler models such as DT or RF provide much faster inference times, 

making them more suitable for real-time scenarios where latency is critical. A trade-off between model 

accuracy and computational cost should be considered based on operational constraints. Moving forward, the 

installation of active harmonic filters, tailored to the harmonic profiles identified in this study, is a critical 

next step. Integrating these filters with real-time monitoring systems, powered by AI models, could enable 

predictive maintenance and adaptive control, enhancing operational efficiency and sustainability. Future 

work should explore the economic and environmental benefits of such implementations, paving the way for 

smarter and more sustainable industrial energy systems. Additionally, integrating this AI-powered framework 

into SCADA systems could enable a fully autonomous power quality management system, enhancing 

resilience, efficiency, and adaptability in industrial energy networks. 
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