
IAES International Journal of Artificial Intelligence (IJ-AI)

Vol. 5, No. 4, December 2016, pp. 143~148

ISSN: 2252-8938  143

Journal homepage: http://iaesjournal.com/online/index.php/IJAI

Parser Extraction of Triples in Unstructured Text

Shaun D’Souza
Technical Lead, Wipro Limited, Bangalore, Karnataka, India

Article Info ABSTRACT

Article history:

Received Aug 14, 2016

Revised Oct 18, 2016

Accepted Nov 21, 2016

 The web contains vast repositories of unstructured text. We investigate the

opportunity for building a knowledge graph from these text sources. We

generate a set of triples which can be used in knowledge gathering and

integration. We define the architecture of a language compiler for processing

subject-predicate-object triples using the OpenNLP parser. We implement a

depth-first search traversal on the POS tagged syntactic tree appending

predicate and object information. A parser enables higher precision and

higher recall extractions of syntactic relationships across conjunction

boundaries. We are able to extract 2-2.5 times the correct extractions of

ReVerb. The extractions are used in a variety of semantic web applications

and question answering. We verify extraction of 50,000 triples on the

ClueWeb dataset.

Keyword:

NLP

Open information extraction

Relation extraction

Copyright © 2016 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

Shaun D’Souza,

Technical Lead (CTO Office)Wipro Limited,

Bangalore, Karnataka, India

Email: shaun.dsouza1@wipro.com

1. INTRODUCTION

There is a considerable amount of research in natural language processing (NLP). With the

availability of a larger set of NLP tools like OpenNLP [3], it is today possible to POS tag and chunk vast

amount of unstructured text that is available on the internet. Projects like ClueWeb, OpenIE and Wikipedia

provide a corpus of text data which can be used for ontological engineering. OpenNLP supports the POS

tagging and chunking of data. It outputs a parse tree for the data which encapsulates the syntactic content in a

n-ary tree data structure. POS tag data provides a higher level of understanding as compared to a bag of

words approach to web search today. We explore opportunities for language inference and understanding

through subject-predicate-object analysis of web scale unstructured data.

Various methods are used to extract subject-predicate-object triples in unstructured data. DBpedia

extractor is used to generate triples using annotated field information in Wikipedia. OpenIE [1] used POS and

chunker data while ClauseIE [2] uses a parser to output a set of word triples.

Bootstrapping functions use N-gram models to generate a template for a given combination of noun

phrases. These are used to search a larger corpus of data for similar templates and generate values. NER

taggers are used to annotate person and location information.

We assume a context free grammar (CFG) for English language [4].

G = (N, Σ, R, S)

N ∈ {non-terminal symbols}

Σ ∈ {terminal symbols}

R ∈ {rules} of the form X → Y1Yn for n ≥ 0, X ∈ N, Yi ∈ (N ⋃ Σ)

S ∈ N start symbol {TOP}

N = {S, NP, VP, PP, DT, VB, NN, IN}

  ISSN: 2252-8938

IJ-AI Vol. 5, No. 4, December 2016 : 143 – 148

144

S = S

Σ = word in the English language

R = S → NP VP

 VP → VB

 VP → VB NP

 VP → VP PP

 NP → DT NN

 NP → NP PP

 PP → IN NP

2. RESEARCH METHOD

We found a limitation of extractors that were unable to extract the verb phrase accurately and

instead appended a large amount of additional words including the trailing noun and preposition context. The

extractors were unable to process sentence and conjunction values resulting in incorrect verb and object

phrases. A parse tree is able to capture conjunction and object phrase information correctly. Although there is

an overhead on the parsing time.

We evaluate the parser tree for sequences of NP noun phrases (subject, object) and VB - verbs

(predicate). OpenNLP generates a parse tree using the CFG rules. We implement an in-order traversal of the

syntactic tree to detect SVO phrases. We maintain a list of all NP phrases in the sentence. We then traverse

the tree to detect subject object pairs and the predicate.

function SUBJECT-NOUN-PHRASE(parse)

 kids ← CHILD(parse)
 for i = 1 to SIZE(kids) do

 if TYPE(kids[i]) = NP then

 subject = kids[i]
 for j = i + 1 to SIZE(kids) do

 if TYPE(kids[j]) = VP | PP | SBAR then

 explored ← an empty set
 while kids[j] not in explored do

 extraction ← APPEND(subject, PREDICATE-VERB-

PHRASE(kids[j]))
 PRINT(extraction)

 SUBJECT-NOUN_PHRASE(kids[i])

function PREDICATE-VERB-PHRASE(parse) returns solution, failure

kids ← CHILD(parse)
initialize predicate string to be empty

 for i = 1 to SIZE(kids) do
 if TYPE(kids[i]) = VP | S then

 if kids[i] not in explored then

 return APPEND(predicate, PREDICATE-VERB-PHRASE(kids[i]))
 else if TYPE(kids[i]) = VB | JJ | RB | MD | TO | ADVP | DT | NN | IN then

 predicate ← APPEND(predicate, kids[i]);

for j = i + 1 to SIZE(kids) do

 if TYPE(kids[j]) = NP | PP | ADJP | S | SBAR then

 return APPEND(predicate, OBJECT-NOUN_PHRASE(kids[j]))
 add parse to explored

 return failure

Figure 1. Subject-Predicate Phrase Algorithm

IJ-AI ISSN: 2252-8938 

Parser Extraction of Triples in Unstructured Text (Shaun D’Souza)

145

function OBJECT-NOUN-PHRASE(parse) returns solution, failure
found ← false

kids ← CHILD(parse)

initialize object string to be empty

 for i = 1 to SIZE(kids) do

 if TYPE(kids[i]) = NP | S then
 found ← true

 if kids[i] not in explored then

 return APPEND(object, OBJECT-NOUN-PHRASE(kids[i]))

 else

 return APPEND(object, GET-COVERED-TEXT(kids[i]))

 else if TYPE(kids[i]) = PP then

if kids[i] not in explored then

 return APPEND(object, OBJECT-PREPOSTION-PHRASE(kids[i]))

else

 return APPEND(object, GET-COVERED-TEXT(kids[i]))

 else if TYPE(kids[i]) = IN | TO then

 object ← APPEND(object, kids[i])

 add parse to explored

 if not found and TYPE(parse) = NP then
 return APPEND(object, parse)

 return failure

function OBJECT-PREPOSITION-PHRASE(parse) returns solution, failure
kids ← CHILD(parse)

initialize preposition string to be empty

 for i = 1 to SIZE(kids) do

 if TYPE(kids[i]) = NP and not in explored then

 return APPEND(preposition, OBJECT-NOUN-PHRASE(kids[i]))
 else if TYPE(kids[i]) = PP and not in explored then

return APPEND(preposition, OBJECT-PREPOSTION-PHRASE(kids[i]))

 else if TYPE(kids[i]) = IN | TO | JJ | ADVP then
 preposition ← APPEND(preposition, kids[i])

 add parse to explored
 return failure

Figure 2. Object Phrase Algorithm

We implement a depth-first search on the n-ary parse tree. We search the parse tree for a noun-verb

phrase indicating the subject-predicate -

Figure 1. The noun phrase is used as the subject in the clause. We look for a verb phrase VP or

preposition phrase PP in the siblings. In the case of subsequent conjunctions CC and WHNP phrases, we

continue to search the sibling nodes. For all found VP, PP we search for the predicate clause in the sentence.

A predicate clause consists of a sequence of verb, adjectives, adverb and modal identifiers. These are

appended to a string of predicates. VP phrases are searched recursively till we find a terminal NP object

clause. We represent the SVO in the triples format. We use a training set of 200 phrases from earlier

publications on information extraction. These give us a range of parse trees to evaluate the search on and

refine.

Earlier work on information extraction was limited to the capabilities of the POS and Chunker tags.

Verb phrases were detected using statistical probabilities of frequently occurring patterns in the English

language. We implement a rigorous parse tree design which preserves the language syntax of the text data.

As there is a high availability of computing today in the cloud, we implement the SVO parser as an

offline function to process the syntactic tree. We parse all the sentences in the text and generate a parsed

output. This is subsequently used to generate the SVO triples. With the availability of computing we can

improve performance of the parser by parallelizing the parsing of input sentences.

We contrast the SVO triples with past research including OpenIE and ClauseIE. We find that a

parser based approach is able to extract a large number of SVO’s accurately. Availability of a syntactic parse

tree also enables us to extract triples with reduced ambiguity. The obtained triples map exactly to sub-trees in

the sentence parse tree and capture all the semantic information – subject predicate. The n-ary parse tree

encapsulates the syntactic structure of the sentence completely.

  ISSN: 2252-8938

IJ-AI Vol. 5, No. 4, December 2016 : 143 – 148

146

We are able to precisely extract SVO information. In the initial revision of the code we implemented

predicate extractions to include the trailing noun phrase. This was updated to resolve the object clause to

contain the noun phrase NP and a trailing preposition phrase PP - Figure 2. We use a set of heuristics to

maximize the number of triples generated for each noun phrase, verb phrase.

3. RESULTS AND ANALYSIS

The SVO extractions are coherent as OpenNLP captures the language syntax in the parse tree. We

compare the number of extractions with the ReVerb extractor. We observe a larger number of triples as we

are searching for all noun phrases in the object. The NLP parser is able to extract a large number of triples

matching ReVerb and ClausIE.

Example sentence

The principal opposition parties boycotted the polls after accusations of vote rigging, and the only

other name on the ballot was a little known challenger from a marginal political party

Figure 3. An Example Sentence Parse Tree

("The principal opposition parties", "boycotted", "the polls")

("The principal opposition parties", "boycotted", "the polls after accusations")

("The principal opposition parties", "boycotted", "the polls after accusations of vote rigging")

("The only other name on the ballot", "was", "a little known challenger")

("The only other name on the ballot", "was", "a little known challenger from a marginal political party")

The above extractions are labelled correctly in the ReVerb dataset and contain some redundant

extractions. We evaluated the parser extraction on the ClueWeb12 dataset and were able to extract more than

50,000 triples. We found that the parser was able to perform on par with ReVerb and ClausIE. This was

achieved using the syntactic functionality in the parse tree - Figure 3. It demonstrates the ability of a parser

based approach in extracting high quality triples.

We verified the extractions for a sample set of sentences in the OpenIE and ClausIE publications.

These were used to ensure precision in the parser extractions. We additionally ran the parser on the ClueWeb

data and compared the number of extractions with the alternative approaches. We measured the distribution

of the noun and verb sub-trees in the sentence text - Table 1. We found that 10% of the phrases were

prepositional. The density of the noun and verb phrases are in agreement with the English context free

grammar (CFG).

Table 1. Phrase Distribution
Noun Frequency

NP → NN 14%

NP → NP PP 12%

NP → DT NN 12%
NP → NN NN 6%

Verb Frequency

VP → VB NP 16%

VP → VB VP 10%

VP → TO VP 9%
VP → VB PP 8%

VP → VB 6%

Preposition Frequency

PP → IN NP 81%

PP → TO NP 9%

Earlier works like OpenIE and ReVerb have looked at the extraction of subject-verb-object (SVO)

triples. They were however based primarily on the availability of POS and chunker data. Structure of the verb

IJ-AI ISSN: 2252-8938 

Parser Extraction of Triples in Unstructured Text (Shaun D’Souza)

147

and noun phrases were determined using statistical distribution of the phrases in text data. ClausIE used a

dependency parser in resolving the SVO relations.

Projects like DBpedia [5] were designed to extract structured data in the information box and map it

to an ontology. Tgrep2 [6] enable us to extract and parse a tree without explicitly coding the rules. A set of

regular expressions are used to extract matching sub-trees.

Figure 4. Number of Correct Non-redundant Extractions

We evaluated a number of extractions on the ReVerb, Wikipedia and NYT dataset. We obtained the

sample dataset from the ClausIE sources. We were able to extract more than 2000 SVO in the dataset with

1000 matching the ClausIE extractions.

As all the extracted results are semantically accurate, the precision of the results is ~0.9. This value

is independent of the dataset and is derived from the extraction grammar rules. The extractions are based on a

rule based system and capture the syntax of the English language. Some of the SVO outputs are incorrect due

to the ambiguities in the language parse tree including conjunctions in noun phrases. We verified the

extracted triples to measure the recall of the data. The recall value is a function of the grammar. We can

refine the rules to find additional triples in the data. This would increase the recall on the extracted values.

We measured an average recall value of 60% on the triples - Table 2. We used the extractions-all-labeled as a

baseline for our computation. These include all the extractions from ReVerb, ClausIE and other OIE utilities.

We estimated a precision of 0.8 for the parser extractions. We found that the parser was able to

extract 2-2.5 times the correct extractions of ReVerb and 80% of the correct non-redundant ClausIE

extractions - Error! Reference source not found..

Table 2. Precision and Recall Values for Various Datasets
 Precision Recall

NYT 0.8 0.64
Wikipedia 0.8 0.71

ReVerb 0.8 0.53

4. CONCLUSION

We presented a methodology for extraction of subject-predicate-object triples in a text corpus. We

plan to extend this work to a larger ontological engineering for knowledge inference. We found that a

syntactic parser was able to accurately extract triples in a text. We explored opportunities to further extend

this work in translating an unstructured corpus of data into a semantic ontology. A user is able to explore the

text using a triples structure.

Provide a statement that what is expected, as stated in the "Introduction" chapter can ultimately

result in "Results and Discussion" chapter, so there is compatibility. Moreover, it can also be added the

prospect of the development of research results and application prospects of further studies into the next

(based on result and discussion).

  ISSN: 2252-8938

IJ-AI Vol. 5, No. 4, December 2016 : 143 – 148

148

REFERENCES
[1] Etzioni O, Fader A, Christensen J, Soderland S, Mausam M. Open Information Extraction: the Second Generation.

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, 2011.

[2] Corro LD, Gemulla R, ClausIE: Clause-Based Open Information Extraction. Proceedings of the 22nd International

Conference on World Wide Web, 2013.

[3] OpenNLP, see https://opennlp.apache.org.

[4] Hopcroft J, Ullman J, Introduction to automata theory, languages, and computation. Addison-Wesley, 1979.

[5] Auer S, Bizer C, Kobilarov G, Lehmann J, Cyganiak R, Ives Z, DBpedia: A nucleus for a web of open data. In The

Semantic Web. 2007; 4825: 722-735, Springer.

[6] Tgrep2, see http://tedlab.mit.edu/~dr/Tgrep2.

BIOGRAPHY OF AUTHOR

Shaun D’Souza obtained a M.S.E. degree in Electrical Engineering from the University of

Michigan, Ann Arbor and a B.S. degree in Computer Science, Electrical and Computer

Engineering from Cornell University. He is currently working as a Technical Lead in the CTO

Office at Wipro. His research interests include machine learning, compilers, algorithms and

systems.

