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A new distributed generation placement method based on biogeography-

based optimization (BBO) is investigated in this paper. A significant novelty 

of this study lies in considering fuzzy load uncertainty. For this purpose a 

fuzzy backward- forward sweep load flow is proposed. The main objectives 

of this study is minimizing power losses and improving voltage profile. A 

comparative study between optimal location and sizing under typical load 

condition and fuzzy load uncertainty is presented. To verify the efficiency of 

proposed BBO method, it is conducted on IEEE 33 bus distribution system, 

also a comparative study between proposed BBO approach and particle 

swarm optimization (PSO), Technical-learning based optimization (TLBO), 

Artificial bee colony (ABC), Imperialist competitive algorithm (ICA) is 

investigated. The simulation results show the excellent and superior 

performance of proposed BBO approach in comparison with the other 

intelligent methods. 
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1. INTRODUCTION  

Nowadays the nature of distribution networks is changing from passive to active by installation of 

small power sources called distributed generations (DGs). The penetration level of these non-conventional 

units is increasing and it is expected that this growth will continue along with customer’s demand. Therefore 

it is obvious that their integration creates remarkable technical and economical challenges for the Distribution 

Network Operators (DNOs) or developers and industries [1]. A properly planned DG, can be beneficial to the 

distribution system and will have positive economical and technical impacts. The economical advantages are 

deferral of network replacement [2], reduction the cost of both network and DG [3] and energy price [4]. 

Technical advantages include various indices such as active and reactive power loss reduction [5], reliability 

improvement [6,7], improvement in the network voltage stability [8] and security [9]. From grid planning 

perspective, several researchers have developed interesting approaches for optimal DG planning due for a 

defined objective function. In [10], a fast analytical method for DG sizing and allocation for loss reduction in 

primary distribution systems is presented. The authors in [11] studied a fuzzy logic-based method to 

determine the optimum DG units locations by considering technical parameters such as power losses, voltage 

level and cable loading. Ref [12] presented a combined GA and PSO method to solve optimal DG location 

and sizing in distribution networks. Although most of the above mentioned approaches are generally able to 

also result in minimum overall energy and power losses, the problem of minimizing losses has been 

investigated using a single demand level. 
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In [13], the practice of minimizing power losses by examining only a single load demand condition 

is unlikely to lead to an overall optimal energy loss especially when a renewable generation could be 

connected to distribution networks. Therefore, a multi-period AC power flow technique is used to cater for 

variability of demand and generation in DG planning and optimization [14]. Also in recent years, applying 

probabilistic (or stochastic) power flow analysis is widely used to consider the uncertainties associated to the 

distribution network loads [15,16]. A methodology to evaluate dispersed photovoltaic (PV) impact on loss 

reduction using probabilistic power flow in a distribution line is studied in [17], also it has shown that by 

considering both stochastic generation and loading conditions, uniform DG sitting would have the highest 

impact on power loss reduction in a distribution line.  

Authors in [18–21] have shown that from the concept of multiple objective approaches, load models 

can significantly affect the optimal location and sizing of DGs in distribution systems. In one of the new 

researches, El-Zonkoly proposed a multi-objective index-based DG size-location optimization problem 

including different load models using particle swarm optimization (PSO) technique. Also it has shown that 

by placement of a DG at most of the system buses the value of the short circuit level increased and in the case 

of the industrial load model, the maximum increase is experienced [22].  

In [23], a methodology is proposed to study the effect of load models on the evaluation of energy 

losses based on time series simulations to take into account both the variations of renewable generation and 

load demand. However the authors considered the detailed load model such as demand profile and demand 

type, by considering a single wind power as a renewable DG, only the impact of load models on energy 

losses is investigated. In these studies, however loads have been modeled as voltage dependent for 

residential, industrial and commercial load types, the demand has been considered as a single load level, 

without differences in the pattern of each type. 

This paper presents a novel DG planning approach based on biogeography-based optimization 

(BBO) algorithm in order to loss reduction and voltage profile improvement in the distribution network. For 

considering uncertainty and stochastic nature of loads, a fuzzy representation of loads is presented in this 

study. The proposed method is applied to IEEE-33 test system and the obtained simulation results verified 

the proper performance of presented approach. All the simulations are carried out on Matlab environment. 

 

 

2. PROBLEM FORMULATION  

2.1.  Objective Function 

In this paper, the objective functions are minimizing power losses and improving voltage profile by 

means of optimizing the following equation: 

 

[( ) ( )]1 2Objective Function Min W P W VILoss         (1) 

 

Where, PLoss is power losses which is evaluated as below: 
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Z R jX  are the network impedance matrix components and Nb is the number of distribution 

network buses [24]. 

Also the in equation (1), improving voltage profile is obtained by minimizing the index (VI) which 

defines as follows [25]: 
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In equation (3), Vtg is Vtarget which defines as 1pu. N is total the number of buses and Vi is the 

voltage at bus i. Improving voltage profile could be provided by closing the index (VI) to zero, so it should 

be minimized.  
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W1 and W2 are the weights of objectives and given the same values as 0.5. 

 

2.2.  Constrains 
The optimization process of DG allocation includes some technical constrains as follows: 

1. The Limitation of Voltage: 

 

min maxiV V V          (4) 

 

Where minV  and maxV  indicate the minimum and maximum permissible voltage (±5%) and iV  is the voltage 

at bus i. 

 

2. The power balance constraint: 

 

/

1 1

 
g DG

N N

gw DG d d L

g d

Pg Pg P P
 

           (5) 

 

Where Ng and NDG are the whole number of traditional generation unit and whole number of DGs, Pggw/DG is 

the value of active power of traditional power generation unit g with introducing of DG, Pgd is the amount of 

active power of DG unit d, Pd is the whole load demand and PL is the whole loss of active power. 

 

3. Active and reactive power constraint: 

 
2 2 2

,gi gi gi maxP Q S           (6) 

 

Where Qgi and Sgi,max depicts the amounts of reactive and apparent power of the ith DG [26]. 

 

2.3. Fuzzy Load Flow 

At any time, load can be shown as a fuzzy number. For example, load at time ti can be represented 

as a triangular fuzzy number (TFN) as depicted in Figure 1a. in this fuzzy load representation, Lhp is the load 

with highest membership values or load with highest possibility of occurrence and Lmin, Lmax are the lower 

and upper limits of load, respectively.  

Other shapes for fuzzy numbers based on operator insight or gathered information can also be 

utilized. For consideration of uncertainty in load, a backward–forward sweep load flow method with fuzzy 

load is used [27]. 

Due to fuzzy modelling of loads, variables are treated as TFNs with real and/or imaginary 

parameters; mathematical operators applied in the fuzzy domain and load flow results are obtained in the 

fuzzy domain. In Figure 1b, voltage at node k is presented as TFN in which Vhp is the voltage with highest 

membership value and Vmin, Vmax are the lower and upper limits of voltage, respectively.  

For a given condition in the distribution network, by running the fuzzy load flow, the result of 

power flow through the line segments and substations give also fuzzy numbers. Therefore active and reactive 

power losses obtain fuzzy numbers. as shown in Figure. 1c, where PLhp is the active power loss with highest 

membership value and PLmin , PLmax are the lower and upper limits of power losses, respectively. Same 

concept is used for the expression of reactive power losses and voltages at different nodes. 
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Figure 1. Fuzzy Load Modelling – Triangular Membership for Power Load (a) – Voltage Constraint in Fuzzy 

Domain (b) – Active Power Loss Constraint in Fuzzy Domain (c) 
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3. BIOGEOGRAPHY THEORY  

Biogeography Based Optimization (BBO) approach which is based on biogeography theory, has 

been proposed in 2008 by Dan Simon [28]. The procedure of BBO is an example of natural process that can 

be utilized to solve general problems of optimization. In BBO, each individual is assumed as an island (or a 

habitat), and the features subscription thorough individuals are depicted as emigration and immigration 

(figure 2). Each solution property is named a suitability index variable (SIV). Geographical regions that are 

appropriated as residences for biological types are said to have a high habitat suitability index (HSI). The 

meaning of a high HSI of a habitats is proper performance on the optimization problem whereas a low HSI 

shows improper performance on the optimization problem. Intelligent algorithms solve the optimization 

problem using Intensification the population. In BBO generating next generation performed by immigrating 

solution properties to the other islands, and giving solution properties by emigration from the other islands. 

Then mutation is done for all the population. This mutation procedure is similar to GA algorithm's mutation. 

 

 

 
 

Figure 2. Emmigration and Immigration of Species and New Island 

 

In BBO, each individual has its own immigration rate, depicted by λ, and emigration rate, depicted 

by μ. A proper solution has higher μ; Therefor, it has a very high probability of borrowing properties from 

other solutions, helping it to improve for the next generation illustrated in Figure 3. 

 

 

 
 

Figure 3. Species Model of a Single Habitat 

 

 

3.1. Proposed method steps 

This study proposed a new approach based on BBO algorithm which is investigated to determine the 

optimal location and capacity of Distributed generation units which is applied to improve voltage profile as 

the main factor for power quality improvement and reduce power losses of the distribution network. Also in 

this investigation, the fuzzy load uncertainty is considered to make the investigation more practical. Due to 

triangular membership function selection for loads, all the output details from power flow and optimization 

process including voltage at different nodes and power losses have three values as lower and upper limits and 

highest membership value of apparent variables. The proposed algorithm steps are performed as follow: 

1. Step 1: Enter the network's load data and run fuzzy power flow to evaluate voltage ate different nodes 

and power losses. 

2. Step 2: Define penalty functions in order to prevent violating constrains. 

3. Step 3: Initialize the BBO parameters including maximum species count, maximum migration rates, and 

maximum mutation rate and an elitism parameter. 

4. Step 4: Initialize habitats depending upon habitat size within feasible region. Set the iteration counter 

m= 0. 

5. Step 5: DG installation and calculate power flow. 
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6. Step 6: Checking network constrains. If the solutions violate the constrains, then apply the penalty, 

otherwise go to next step.  

7. Step 7: Add the counter by 1. Check whether it is less than the maximum iteration limit. If no, print the 

output results. 

8. Step 8: If yes, calculate the HSI value for the given μ & λ and Select the optimum HSI value based on 

elitism parameters. 

9. Step 9: Modify each non-elite habitat using immigration & emigration rate. 

10. Step 10: Check for conceivability. If yes, HSI is computed. 

11. Step 11: Species count probability is updated and recalculated the HSI. 

12. Step 12: Go to step 7 for the next iteration. This procedure can be finished after a conceivable problem 

solution has been found. 

The following BBO parameters have been used, population size=50, Habitat Modification 

Probability=1, Immigration Probability bounds per gene= [0, 1], elitism parameter = 4, step size for 

numerical integration of probabilities=1, maximum λ and μ rates for each island=1 and Mutation 

Probability=0.05 
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Figure 4. Flowchart of Proposed BBO Approch 

 

 

4. SIMULATION RESULTS 

In order to investigate the performance of the proposed approach, the IEEE 33-bus radial 

distribution test system is utilized in this section. Figure 5 shows the single line diagram of the test system. 

The total amounts of the active and reactive loads of the system are 3.715 MW and 2.3 MVAr, respectively. 

In addition, as mentioned in [29], the initial amount of the active and reactive power losses before DG 

allocation are 210.84 kW and 143.114 kVAr, respectively. Load is assumed as a triangular fuzzy number as 

shown in Figure 1(a) in section 2.3. Minimum load and maximum load on buses are 90 and 110%, 

respectively, of load with highest membership value. Loads with highest membership values on various buses 

are shown in appendix (table 4). 

 

 
 

Figure 5. Single Line Diagram of 33-Bus Distribution Test System 
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Optimal DG placement and sizing with considering load uncertainty is investigated. fuzzy load flow 

is applied in order to load uncertainty consideration. Table 1 hows the node voltages results of initial fuzzy 

load flow and DG placement under fuzzy uncertainty. It should be noted that because of fuzzy load flow 

consideration, all the voltages at different nodes and power losses take three values and that is due to the 

triangular fuzzy membership function as mentioned in section 2.3. These three values include lower and 

upper limits depicted by min and max indices respectively and also highest membership (hp) value.  

 

 

Table 1. Results of Bus Voltages in Fuzzy Load Flow, before and after DG Placement using BBO Method  
Bus number Vmin 

(without DG) 

Vhp 

(without DG) 

Vmax 

(without DG) 

Vmin 

(with DG) 

Vhp 

(with DG) 

Vmax 

(with DG) 

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

2 0.9966 0.9970 0.9974 0.9987 0.9991 0.9994 

3 

4 

5 

6 
7 

8 

9 
10 

11 

12 
13 

14 

15 
16 

17 

18 
19 

20 

21 
22 

23 

24 
25 

26 

27 
28 

29 

30 
31 

32 

33 

0.9803 

0.9718 

0.9631 

0.9427 
0.9389 

0.9228 

0.9156 
0.9089 

0.9079 

0.9061 
0.8991 

0.8964 

0.8947 
0.8931 

0.8909 

0.8901 
0.9960 

0.9918 

0.9910 
0.9903 

0.9763 

0.9689 
0.9650 

0.9404 

0.9376 
0.9245 

0.9159 

0.9117 
0.9070 

0.9059 

0.9056 

0.9829 

0.9754 

0.9679 

0.9495 
0.9459 

0.9323 

0.9260 
0.9203 

0.9194 

0.9179 
0.9117 

0.9094 

0.9080 
0.9066 

0.9046 

0.9040 
0.9965 

0.9929 

0.9922 
0.9916 

0.9793 

0.9726 
0.9693 

0.9475 

0.9450 
0.9335 

0.9253 

0.9218 
0.9176 

0.9167 

0.9164 

0.9854 

0.9790 

0.9727 

0.9563 
0.9530 

0.9418 

0.9363 
0.9316 

0.9309 

0.9297 
0.9244 

0.9225 

0.9213 
0.9202 

0.9183 

0.9179 
0.9970 

0.9940 

0.9934 
0.9929 

0.9823 

0.9764 
0.9736 

0.9547 

0.9523 
0.9426 

0.9347 

0.9318 
0.9282 

0.9275 

0.9272 

0.9942 

0.9914 

0.9892 

0.9836 
0.9820 

0.9774 

0.9767 
0.9767 

0.9768 

0.9771 
0.9794 

0.9809 

0.9794 
0.9778 

0.9757 

0.9750 
0.9981 

0.9938 

0.9930 
0.9922 

0.9938 

0.9932 
0.9969 

0.9836 

0.9834 
0.9848 

0.9851 

0.9864 
0.9819 

0.9809 

0.9805 

0.9960 

0.9942 

0.9927 

0.9896 
0.9883 

0.9855 

0.9855 
0.9861 

0.9863 

0.9868 
0.9897 

0.9913 

0.9900 
0.9887 

0.9869 

0.9863 
0.9986 

0.9950 

0.9943 
0.9936 

0.9956 

0.9954 
0.9986 

0.9896 

0.9898 
0.9911 

0.9925 

0.9938 
0.9899 

0.9891 

0.9888 

0.9974 

0.9965 

0.9957 

0.9945 
0.9935 

0.9922 

0.9929 
0.9939 

0.9942 

0.9948 
0.9983 

1.0000 

0.9989 
0.9978 

0.9962 

0.9957 
0.9989 

0.9959 

0.9953 
0.9948 

0.9970 

0.9973 
1.0000 

0.9947 

0.9951 
0.9964 

0.9986 

0.9999 
0.9966 

0.9959 

0.9957 

 

 

By comparing the voltage values in Table 1. Before and after DG placement, a significant 

improvement in bus voltages is concluded after optimal DG allocation. 

The optimization process is performed by using BBO algorithm and obtained simulation results are 

compared with PSO, ABC, ICA and TLBO algorithms. All the optimization methods are implemented on 

IEEE-33 bus test system considering fuzzy uncertainty. Table 2 shows the optimal location and sizes of three 

DGs, minimum voltages and active and reactive power losses before and after optimization process. As 

mentioned before, voltages and losses are depicted as fuzzy values. It should be noticed that the three 

allocated DGs have the capability of injecting both active and reactive powers and their maximum capacity is 

1.5 MVA. 

By looking at Table 2 and comparing the results of optimal DG allocation by different methods, it is 

clearly concluded that BBO approach resulted more reduction in active and reacative power losses and also 

the value of minimum voltages in three fuzzy levels of this approach have the best results among the other 

methods. This proper results is due to selection the optimum location for DGs and the best usage of DGs' 

capacities that performed by BBO approach. It should be noted that the population size 50 and the maximum 

number of iteration 120, are considered during the optimization process for all the methods.The details of 

optimal sizes selection of DGs obtained by BBO method are depicted in Table 3. Loads with highest 

membership in Table 4. 
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Table 2. Comparison between Different Algorithms in Optimal DG Allocation with Fuzzy Load Uncertainty  
Method Optimal size and 

location (@bus) 
Minimum fuzzy voltages @ bus Fuzzy active power losses Fuzzy reactive power losses 

Initial 

 

 

---- 

Min(Vmin)=0.8879@18 

Min(Vhp)=0.9039@18 
Min(Vmax)=0.9246@18 

PL,min (kW)= 130.627 

PL,hp (kW)= 210.843 
PL,max (kW)= 286.086 

QL,min (kVAr)= 88.612 

QL,hp (kVAr)= 143.114 
QL,max (kVAr)= 194.280 

BBO 1346 MVA @ 20 

758 MVA @ 10 
915 MVA @ 15 

Min(Vmin)=0.9750@18 

Min(Vhp)=0.9863@18 
Min(Vmax)=0.9957@18 

PL,min (kW)= 9.507 

PL,hp (kW)= 14.089 
PL,max (kW)= 23.793 

QL,min (kVAr)= 7.575 

QL,hp (kVAr)= 10.932 
QL,max (kVAr)= 17.915 

PSO 1355 MVA @ 20 

710 MVA @ 10 
912 MVA @ 15 

Min(Vmin)=0.9729@18 

Min(Vhp)=0.9843@18 
Min(Vmax)=0.9937@18 

PL,min (kW)= 9.515 

PL,hp (kW)= 14.693 
PL,max (kW)= 25.006 

QL,min (kVAr)=7.580 

QL,hp (kVAr)= 11.408 
QL,max (kVAr)=18.871 

ABC 1236 MVA @ 20 

784 MVA @ 10 
688 MVA @ 15 

Min(Vmin)=0.9749@18 

Min(Vhp)=0.9863@18 
Min(Vmin)=0.9957@18 

PL,min (kW)= 11.129 

PL,hp (kW)= 18.132 
PL,max (kW)= 30.304 

QL,min (kVAr)=8.295 

QL,hp (kVAr)= 13.103 
QL,max (kVAr)=21.567 

ICA 1205 MVA @ 20 

884 MVA @ 6 
937 MVA @ 15 

Min(Vmin)=0.9626@18 

Min(Vhp)=0.9759@18 
Min(Vmax)=0.9870@18 

PL,min (kW)= 13.937 

PL,hp (kW)= 18.915 
PL,max (kW)= 30.041 

QL,min (kVAr)=10.171 

QL,hp (kVAr)= 13.962 
QL,max (kVAr)=22.132 

TLBO 1350 MVA @ 20 

755 MVA @ 10 
903 MVA @ 15 

Min(Vmin)=0.9748@18 

Min(Vhp)=0.9864@18 
Min(Vmax)=0.9959@18 

PL,min (kW)= 9.612 

PL,hp (kW)= 14.111 
PL,max (kW)= 24.035 

QL,min (kVAr)=7.628 

QL,hp (kVAr)= 10.976 
QL,max (kVAr)=18.050 

 

 

Table 3. Optimum Sizes and Locations of Allocated DGs using BBO Approach 
DG location PDG (kW) QDG (kVAr) 

10 697.6 298.3 
15 

20 

828.7 

953.4 

391.4 

951.7 

 

 

Table 4. Loads with Highest Membership Values on Buses 
Bus number P (kW) Q (kVAr) Bus number P (kW) Q (kVAr) 

2 100.00 60.00 18 90.00 40.00 

3 

4 
5 

6 

7 
8 

9 

10 
11 

12 

13 
14 

15 

16 
17 

90.00 

120.00 
60.00 

60.00 

200.00 
200.00 

60.00 

60.00 
45.00 

60.00 

60.00 
120.00 

60.00 

60.00 
60.00 

40.00 

80.00 
30.00 

20.00 

100.00 
100.00 

20.00 

20.00 
30.00 

35.00 

35.00 
80.00 

10.00 

20.00 
20.00 

19 

20 
21 

22 

23 
24 

25 

26 
27 

28 

29 
30 

31 

32 
33 

90.00 

90.00 
90.00 

90.00 

90.00 
420.00 

420.00 

60.00 
60.00 

60.00 

120.00 
200.00 

150.00 

210.00 
60.00 

40.00 

40.00 
40.00 

40.00 

50.00 
200.00 

200.00 

25.00 
25.00 

20.00 

70.00 
600.00 

70.00 

100.00 
40.00 

 

 

5. CONCLUSION  

In this study a novel DG allocation approach based on biogeography-based optimization (BBO) 

algorithm in order to power loss reduction and voltage profile improvement in the distribution network is 

proposed. Uncertainty and stochastic nature of loads is considered as fuzzy representation of loads in this 

paper. To show the effectiveness of presented approach, the proposed method is applied to IEEE-33 test 

system and the obtained simulation results based on DG allocation under fuzzy load uncertainty are 

compared with some of well known optimization methods including particle swarm optimization (PSO), 

Technical-learning based optimization (TLBO), Artificial bee colony (ABC), Imperialist competitive 

algorithm (ICA). The comparison results verified the better performance of presented BBO approach among 

the introduced optimization methods. All the simulations are implemented on Matlab environment. 
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