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 As voice-based authentication becomes increasingly integrated into security 

frameworks, establishing effective defenses against voice spoofing, 

particularly replay attacks, is more crucial than ever. This paper presents a 

novel comprehensive framework for replay attack detection that leverages the 

integration of advanced spectral-temporal feature extraction and graph-based 

feature processing mechanisms. The proposed system presents the design of a 

waveform encoder and a novel temporal residual unit for spectral and 

temporal feature extraction in synchronous. Further, an approach of selective 

attention graph followed by multi-scale feature synthesis is employed to retain 

precise and spoof indicative feature vectors at the classification layer. The 

proposed method addresses the significant challenge of distinguishing 

genuine speech from replayed recordings. The validation of the proposed 

model is done on the ASVSpoof2019 dataset to demonstrate the efficacy of 

the proposed approach. The proposed system outperforms existing methods, 

achieving a lower equal error rate (EER) of 0.015 and a reduced tandem 

detection cost function (t-DCF) of 0.503. The comparative outcome exhibits 

the robustness of the method in identifying replay attacks.  
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1. INTRODUCTION 

Voice-based authentication systems use an individual's unique voice characteristics and have become 

an integral part of modern security systems ranging from personal device security to enterprise data security 

[1], [2]. However, due to its higher adoption also brought new security vulnerabilities, especially voice 

spoofing attacks. Automatic speaker verification (ASV) systems use voice biometrics to verify identity by 

analyzing speech characteristics such as pitch and tone [3]. However, they are increasingly exposed to the risk 

of voice spoofing, where attackers copy or manipulate voice signals to breach security [4]. Among speech 

spoofing methods, replay attacks pose a particularly difficult challenge [5], [6]. In replay attacks, malicious 

actors use recordings of legitimate users, a strategy that is both relatively easy and efficient, thus becoming a 

preferred method for compromising the reliability of ASV systems [3], [7]. The primary challenge in 

countering replay attack is the minute difference between real speech and spoofed speech, which often 

undetectable by traditional ASV systems [8]. This difficulty is further intensified by rapidly evolving recording 

and playback technologies that create high-quality analogue audio that is indistinguishable from real speech 

[9], [10]. Hence, detecting replay voice attacks faces several potential challenges, including high accuracy in 

feature discrimination and the need for systems to adapt to evolving techniques [11], [12].  

https://creativecommons.org/licenses/by-sa/4.0/
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In recent state-of-art works, different researchers have carried out many works, where deep learning 

approaches and their hybridization is done to build an effective detection model but at the cost of 

computationally intensive modelling. The researchers in the study of Gong et al. [13] raised critical concerns 

about the security of ASV systems against evolving replay attacks. The authors have presented a new replay 

attack dataset named realistic replay attack corpus for voice-controlled systems (ReMASC), developed 

specifically for assessing vulnerabilities in ASV systems against modern replay attacks on text-dependent 

systems under varying recording and playback conditions. Wu et al. [14] identified the significant vulnerability 

of text-dependent speaker verification systems to replay attacks. Using a similarity score, they presented an 

anti-spoofing technique that compares presented speech samples to previously stored ones. Li et al. [15] focus 

on overcoming the over-fitting problem in replay detection, often caused by variability factors in speech 

signals. A frequency warping approach is then proposed and successfully tested on the ASV-spoof 2017 

database, demonstrating its effectiveness in reducing over-fitting and enhancing replay attack detection.  

Alegre et al. [16] critically reevaluate the risks of spoofing attacks on ASV systems and highlight the greater 

risk of replay attacks due to their simplicity and lack of required technical expertise. Through comprehensive 

testing against six different ASV systems, including an advanced iVector-probabilistic linear discriminant 

analysis (PLDA) system, the study demonstrates that low-effort replay attacks result in higher false acceptance 

rates compared to more complex spoofing methods. In the study of Xue et al. [17], an iterative knowledge 

distillation method is adopted for fake speech detection where a deep network as the instructor model to guide 

multiple shallow classifiers by minimizing feature differences. Lei et al. [18] developed a method to detect 

known and unknown spoofing attacks using 1-D convolutional neural network (CNNs) and, Siamese CNN and 

Gaussian mixture model (GMM) components to capture both local and global speech features. Wu et al. [19] 

introduced the feature engineering technique, which uses a transformer trained on a genuine speech from the 

ASVspoof 2019 logical access corpus to identify and remove spoofing artefacts. Javed et al. [20] developed a 

framework that uses co-occurrence patterns and cepstral coefficients to effectively detect distortions and 

artefacts induced by different spoofing methods, providing comprehensive protection against even complex 

spoofing attacks. Kwak et al. [21], [22] developed new models that are more efficient and robust to unseen 

spoof attacks. Guo et al. [23] used incremental learning to improve the generalizability of spoof detection 

models to unseen spoof algorithms. They discuss how to enhance these models' embedding space and decision 

boundaries to adapt to new spoofing threats. Saranya et al. [24] presented a method for detecting replay attacks 

by analyzing reverberation and channel information from non-voiced segments of speech identified using a 

voice activity detector. The approach utilizes multiple feature representations to capture residual vocal tract 

information in these segments, employing Gaussian mixture models to create baseline systems for evaluation. 

Kemanth et al. [25] proposed solution that adopts CNNs, leveraging their powerful feature extraction 

capabilities to identify characteristics indicative of replay attacks. Through this approach, the researchers 

demonstrate a significant improvement in the system's ability to discern genuine speech from replayed 

recordings, showcasing the effectiveness of CNNs in enhancing the security of speaker verification systems 

against such sophisticated threats.  

Hence, there are many works in the literature for designing an efficient detection system for replay 

attacks, which is fraught with challenges. Despite numerous studies in the context of replay attack detection, a 

significant research gap remains. Most existing works primarily focus on extracting features like mel-frequency 

cepstral coefficients (MFCC) or mel-spectrogram to train deep learning models. However, this approach 

overlooks other potentially valuable features, such as tonnetz and spectral contrast. Though less explored in 

the literature, these features could significantly enhance the detection process. Although CNNs are prevalently 

used for their ability to capture spectral features, their capacity to process temporal dependencies remains 

inadequate. However, the recent trends show the usage of integrated and hybrid approaches but at the cost of 

higher computational cost and lack of optimization in the system design. Replay attack detection fundamentally 

involves discerning the differences in frequency attributes between genuine and replayed speeches. However, 

distinguishing these features is a complex task, often hindered by the evolving nature of attack strategies and 

the limitations of current ASV systems [26]. This can be better understood by the different replay adversarial 

scenarios shown in Figure 1 against the ASV system. In scenario Figure 1(a) the adversary captures genuine 

speech directly from the target speaker using a recording device. This speech is then replayed into the ASV 

system, with potential alterations to incorporate environmental acoustics in an attempt to deceive as the 

legitimate user. Figure 1(b) depicts an alternative attack vector where the attacker utilizes a previously recorded 

or acquired digital audio file, bypassing the need for real-time capture. The file is played back to the ASV 

system, challenging the system's ability to discern its authenticity. While in the third scenario shown in  

Figure 1(c) represents an advanced technique where the attacker employs a vocal tract emulator. This approach 

aims to simulate the nuances of human speech production and the corresponding environmental acoustics, thus 

enhancing the replayed audio's authenticity to deceive the ASV system.  
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Figure 1. Different replay attack scenarios targeting ASV systems: (a) direct recording replay attack,  

(b) digital copy replay attack, and (c) digital copy replay attack with vocal tract emulation 

 

 

These scenarios demonstrate the evolving threat scenario to ASV systems and the demand for 

designing robust detection mechanisms that can robustly identify the relevant artefacts (device artefacts, and 

speaker identity), while, at the same time, ignoring variability introduced by the other factors (environmental 

noise) to generalize well to unknown scenarios. This necessitates using a feature representation with high 

spectral information to capture details present in spectral regions as well as temporal dependencies that contain 

discriminative information as an indication of replay attacks. Moreover, the model should also be able to 

selectively attend to these regions so that it does not overfit the other inessential variability factors. 

Therefore, this paper proposes a comprehensive framework specifically designed to counteract the 

complexities inherent in replay attacks. This framework precisely analyzes acoustic features extracted from 

raw audio waveforms, employing advanced learning schemes and graph-based analysis techniques to harness 

the complementary strengths of spectral analysis temporal dynamics. The prime aim of the proposed study is 

to present a dynamic algorithm capable of adjusting to novel spoofing techniques, thereby ensuring robust 

defense mechanisms. By examining both spectral and temporal aspects, the proposed approach aims to discern 

the subtle distinctions between genuine and replayed audio. The design of the proposed system is carried out 

in such a way that it attempts to achieve a balance between high detection accuracy with manageable 

computational demands to be feasible for practical deployment. The key contribution of this paper is 

highlighted as follows:  

– This paper introduces an advanced feature representation scheme from raw audio signals augmenting 

models with spectral and temporal information to capture discriminative replay indications effectively. 

– The proposed framework leverages the waveform encoder module that focuses on learning band-pass 

filters to capture critical frequency components for fine-grained spectral analysis.  

– The study has also proposed the implementation of temporal residual units (TRU) to process the temporal 

aspects of the audio signal. 

– A selective attention graph (SAG) layer dynamically weights spectral-temporal regions, preventing 

overfitting by selectively concentrating on relevant artifacts while disregarding non-essential variability, 

ensuring robust generalization across diverse scenarios. 

The remainder of the manuscript is structured as follows: section 2 outlines the system design 

methodology, detailing the role of each component and the implementation procedure for detecting replay 

attacks. Section 3 presents the results and discussion, providing insights into the effectiveness of the proposed 

framework. Finally, section 4 concludes the paper by summarizing its contributions and discussing implications 

for future research. 

 

 

2. METHOD 

The proposed study presents a novel computational framework, a multi-layered system designed to 

analyze audio waveforms, extract spectral-temporal features, process key replay indicative features, and decide 
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whether the audio has been tampered with or is authentic. The proposed framework is designed to process 

directly raw audio waveforms from the input audio signals, as this choice facilitates direct engagement with 

the intrinsic properties of the speech signal, bypassing the need for feature extraction typical in conventional 

signal processing. Unlike many existing works, the proposed study adopts an approach of graph theory in the 

deep learning model where audio data is processed in a graph, where nodes represent segments and features of 

the audio, and edges denote relationships or dependencies between these segments. The proposed system also 

leverages an application of an attention mechanism, making the proposed system focus on analyzing both 

spectral (frequency-related) and temporal (time-related) aspects of audio data. The attention mechanism 

enables the model to focus on the most relevant parts of this data, which are crucial for detecting spoofing 

attacks. The study also introduces a significant feature extraction operation within the graph structure, ensuring 

that only the most relevant or distinctive features are considered when the system decides whether an utterance 

is spoofed or bonafide. Figure 2 presents the schematic architecture of the proposed system following various 

specialized and technologically advanced computing modules strategically integrated in a highly synchronized 

manner.  

 

 

 
 

Figure 2. Illustrating high-level architecture of the proposed system for replay attack detection 

 

 

The architecture of the proposed system shown in Figure 2 adopted a supervised learning approach in 

the training. The system first implements a waveform encode module, which takes input audio signal from the 

dataset and processes it to extract high-level spectral features. This module employs a data-driven strategy with 

2D-CNN and parametrized Sinc functions that act as band-pass filters to capture robust frequency information, 

offering a high-level spectral attribute without reliance on handcrafted feature extraction methods. The 

waveform encoder also uses batch normalization after convolution operation to ensure the input data 

distribution for each mini-batch during training stays consistent. Following batch normalization, a non-linear 

activation function introduces non-linearity, enabling the network to learn complex patterns and maintaining a 

self-normalizing property that promotes a stable learning process. The second module, TRU, is designed to 

process and enhance spectral features by integrating temporal dynamics, enabling the model to comprehend 

complex speech patterns that evolve over time. The TRU module integrates long short-term memory (LSTM) 

with skip-connection blocks to capture time-dependent patterns and prevent the vanishing gradient problem, 

preserving rich spectral and temporal information. The next important module of the proposed system is the 

SAG module, which represents the graph attention mechanism. The SAG module computes attention 

coefficients that weigh the features' importance, allowing the model to focus on the most informative aspects 

of the input data. Afterwards, the proposed study implements a multi-scale feature synthesis function, allowing 

the model to synthesize features at different scales, thus capturing both local details and global contextual 

information, highlighting traits indicative of replay attacks. Before classification, a pooling layer is utilized to 

reduce the feature maps' dimensionality and make the network more computationally efficient. The final layer 

authentication classification extracts a final decision regarding the authenticity of the audio signal. This module 

employs a linear layer that transforms the pooled features into a decision space, followed by a Soft-max 

function that yields a probability distribution over potential class i.e. bonafide or spoofed audio.  
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2.1.  Dataset description 

This research study utilizes the ASVSpoof2019 dataset [27], a robust and extensive collection of vocal 

samples designed for spoofing and countermeasure analysis. Originating from the voice cloning toolkit 

(VCTK) corpus, this dataset encompasses a variety of artificial, altered, and replayed voice samples from  

107 speakers, comprising 46 males and 61 females. ASVSpoof 2019 is structured into three primary segments: 

training, development, and evaluation. The training and development sets are subjected to 20 speakers, divided 

between targets and non-targets. The evaluation set, however, includes 67 speakers, 48 of them targets and 19 

non-targets. This dataset focuses on assessing the impact of spoofing countermeasures on ASV systems, 

highlighted by adopting the tandem detection cost function (t-DCF) as a critical metric. This dataset introduces 

two principal spoofing scenarios: 

‒ Logical access: this scenario simulates attacks directly targeting the ASV system, typically involving 

synthetic speech or voice conversion. These attacks occur without the influence of acoustic propagation 

or specific microphone characteristics. 

‒ Physical access: both legitimate and spoofed speeches are considered to traverse a physical space before 

being captured by the system's microphone. A critical aspect of PA is replaying attacks, where previously 

recorded legitimate attempts are replayed in the same environment. 

Table 1 demonstrates the distribution of speakers and samples across the training, development, and 

evaluation subsets. The training subset comprises 8 male and 12 female speakers, with 48,600 spoofed and 

5,400 bonafide samples. The development subset reflects the gender distribution of the training subset, 

containing a similar number of spoofed and bonafide samples. The evaluation subset is more extensive as it 

consists large sample of 30 male and 37 female speakers and a larger pool of 13,4630 spoofed and 18,089 

bonafide speech samples. This diverse and comprehensive dataset is instrumental in evaluating the 

effectiveness of the proposed spoofing detection system under various scenarios. 

 

 

Table 1. The demonstration of dataset statistics 

Subset 
Speakers Class 

Male Female Spoof Bonafide 

Train 8 12 48,600 5400 

Dev 8 12 24,300 5400 

Eval 30 37 13,4630 18,089 

 

 

2.2.  Waveform encoder 

The waveform encoder is the first critical component in the proposed system, responsible for 

processing raw audio signals. Its primary function is to extract meaningful spectral features from these raw 

waveforms, essential for the subsequent stages of spoofing detection. The proposed waveform encoder consists 

of SincNet [28], a specialized type of CNN that utilizes parametrized Sinc functions to perform convolution 

operations directly on the raw audio waveform. This approach offers a more efficient and interpretable method 

for feature extraction compared to traditional CNN. The convolution operation in SincNet can be 

mathematically represented as follows,  

The raw input audio signal can be considered as 𝑥[𝑡], where 𝑡 represents discrete time steps. This 

signal is a time-domain representation of the audio waveform. The SincNet layer within the waveform encoder 

is designed to process the input 𝑥[𝑡] through a series of parametric band-pass filters defined using the Sinc 

function, acting as an idealized band-pass filter. For a given filter𝑖the impulse response is numerically 

expressed as follows:  

 

𝑔[𝑛, 𝑓1𝑖, 𝑓2𝑖] = 2𝑓2𝑖 × 𝑠𝑖𝑛𝑐(2𝜋𝑓2𝑖𝑛) − 2𝑓1𝑖 × 𝑠𝑖𝑛𝑐(2𝜋𝑓1𝑖𝑛) (1) 

 

𝑦𝑖[𝑡] = 𝑥[𝑡] ∗ 𝑔𝑖[𝑡, 𝑓1𝑖 , 𝑓2𝑖]  (2) 

 

In (1) 𝑓1 and 𝑓2 are the lower and upper cut-off frequencies of the filter. The convolution of the input signal 

with the i-th filter is expressed in (2) where, ∗denotes the convolution operation and 𝑦𝑖[𝑡]is the output of i-th 

filter. After the convolution operation, batch normalization is applied, followed by non-linear activation. The 

operation of batch normalization over the obtained feature map can be numerically expressed as (3): 

 

𝑦𝑖̂[𝑡] =
𝑦𝑖[𝑡]−𝜇𝑏𝑎𝑡𝑐ℎ

√𝜎𝑏𝑎𝑡𝑐ℎ
2 +𝜖

 (3) 
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Where 𝜇𝑏𝑎𝑡𝑐ℎ and 𝜎𝑏𝑎𝑡𝑐ℎ
2  are the mean and variance of the batch, respectively, and 𝜖 is a small constant to 

prevent division by zero. This step normalizes the output of each filter across the batch, enhancing the stability 

and efficiency of the network. To enable the network to capture complex patterns in the data, a non-linear 

activation function is applied to the batch-normalized output as expressed as (4):  

 

𝑧𝑖[𝑡] = 𝜆 {
𝑦𝑖̂[𝑡] 𝑖𝑓 𝑦𝑖̂[𝑡] > 0

𝛼 × (𝑒𝑦𝑖̂[𝑡] − 1) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4) 

 

Where, 𝜆 and 𝛼 are predefined parameters of the non-linear activation function. Upon completion of the 

convolution, batch normalization, and non-linear activation processes, these spectral features are represented 

as a multi-dimensional tensor, referred to as the spectral feature map tensor. If the SincNet layer employs 𝑁 

filters and the input audio signal 𝑥[𝑡], has a length of 𝑇 discrete time steps, the spectral feature map tensor 

resulting from the SincNet layer is a 𝑁𝑥𝑇 matrix. Each element in this tensor denoted as 𝑍𝑖,𝑡 corresponds to 

the activated output of the i-th filter at time step 𝑡. Thus, for the entire set of 𝑁 filters, the spectral feature map 

tensor is represented as (5): 

 

𝑍 =

[
 
 
 
𝑍1,1 𝑍1,2 ⋯ 𝑍1,𝑇

𝑍2,1 𝑍2,2 ⋯ 𝑍2,𝑇

⋮
𝑍𝑁,1

⋮
𝑍𝑁,2

⋱
⋯

⋮
𝑍𝑁,𝑇]

 
 
 

 (5) 

 

Each row in the tensor 𝑍 corresponds to the output from one of the𝑁SincNet filters across all time 

steps, encapsulating a specific frequency band's information extracted from the audio signal. Each column in 

the tensor represents the combined filter outputs at a particular time step, providing a comprehensive spectral 

representation at that instant. The effectiveness of this module lies in its ability to learn from the raw waveform 

directly, thus preserving the natural characteristics of the audio while extracting crucial spectral features. These 

features then serve as the foundation for the subsequent modules in the system, where they are further analyzed 

for spoofing detection.  

 

2.3.  Temporal residual unit module 

The TRU is an essential component of the proposed system, designed to capture the temporal 

dynamics and dependencies inherent in audio signals. It is adept at processing the spectral features extracted 

by the waveform encoder, further refining these features to emphasize time-based patterns crucial for 

distinguishing genuine from spoofed audio. The TRU comprises LSTM layers followed by modified residual 

blocks or skipped connections. The LSTM layers capture temporal dependencies, while the residual blocks 

ensure the preservation and enhancement of both spectral and temporal information. The output of the TRU is 

an enriched feature representation that encapsulates both spectral and temporal characteristics of the input 

audio. The design consideration of TRU includes the following considerations: 

– The output of SincNet, a set of feature maps, is reshaped to form a sequence suitable for LSTM 

processing. This reshaping is crucial to align the spectral features for temporal analysis.  

– The LSTM layer takes the reshaped SincNet output and extracts temporal features, capturing time-

dependent patterns in the audio signal.  

– To enable the residual connection, the output of the LSTM (both feature dimensions and sequence length) 

must match its input. This ensures seamless addition of the LSTM output back to its input.  

– A linear transformation is applied for alignment if there is a mismatch between the LSTM output and the 

input dimensions. This step is essential for maintaining the integrity of the residual connection.  

– The residual block processes the LSTM output to enhance temporal features while preserving spectral 

information. The block integrates the original LSTM output with the processed output to enrich the feature 

set.  

– It is important to note that the input to the LSTM, which forms the basis for the residual connection, is 

not the raw output of SincNet but rather its reshaped or processed form suitable for LSTM processing. 

Figure 3 shows the implementation of the TRU module, which takes input as a spectral feature map 

tensor Z from the Waveform Encoder. The LSTM processes the spectral feature map Z in a sequence-to-

sequence manner. The output of the LSTM layer can be represented as H=[ℎ1, ℎ2, ℎ2 ⋯ℎ𝑇], where each  

ℎ𝑡 ∈ ℝ𝑀 is the hidden state of the LSTM at time step t. Each residual block within the TRU applies a series of 

transformations to the LSTM output H. The study denotes this transformation function within the residual 

block as F(H, 𝑄𝑟𝑒𝑠), where, 𝑄𝑟𝑒𝑠 represents the parameters of the block. 
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Figure 3. Illustrating schema of TRU module 

 

 

The output of the residual block is given by R=H+F(H, 𝑄𝑟𝑒𝑠), where, R is the resultant feature 

representation with both spectral and temporal features enhanced. This enhanced fearture plays an important 

role in improving generalization capability of  model throughout entire training process and also it allows for 

the effective learning and retention of significant temporal patterns over extended sequences. By integrating 

LSTM layers alongside residual blocks, the TRU integrates these patterns with spectral features, thereby 

improving the overall capability of the system to distinguish between genuine and spoofed audio. 

 

2.4.  Selective attention graph module 

The SAG module employs an attention mechanism within a graph-based framework, enabling the 

model to focus selectively on the most pertinent features for spoofing detection. The subtleties between genuine 

and replayed speech are often minute. The traditional methods often overlook these minute distinctions, leading 

to less effective spoofing detection. The proposed SAG addresses this limitation by employing an attention 

layer, which facilitates focused processing of the most relevant features. The attention mechanism in this layer 

focuses on identifying the most relevant features within the input it receives (containing both spectral and 

temporal information). It assigns higher weights to more important features for distinguishing genuine speech 

from replay attacks. This process is based on the relationships and structure of the features as they are 

represented in a graph format. Each node in the SAG represents a spectral-temporal feature, and the edges 

signify the relationships or dependencies between these features. By computing attention coefficients, the SAG 

dynamically adjusts the influence of each node, allowing the network to prioritize features most indicative of 

spoofing activities. This process enhances the model's sensitivity to relevant cues and suppresses irrelevant 

noise or distortions that may lead to false detections. The output of the SAG is an aggregated feature set for 

each node, where the features of neighboring nodes are combined in a weighted manner based on the computed 

attention scores. This aggregation allows the model to emphasize more relevant features for the detection task. 

The algorithm-1 describes the implementation and core operation of the SAG module.  

 

Algorithm 1. Feature refinement with selective graph attention 
Input: Feature Tensor 𝑅𝜖ℝ𝐵×𝐿×𝐷, where B is batch size, L is sequence length and D is feature-dimension  

Output: Refined feature tensor Y 

Start  

1. Define linear transform layers for attention computation, 𝑊𝑎𝑡𝑡  𝜖 ℝ
𝐷×𝐷1

 and bias 𝑏𝑎𝑡𝑡. 

2. Define projection layers 𝑊𝑝𝑟𝑜𝑗
𝑎𝑡𝑡 ,𝑊𝑝𝑟𝑜𝑗

𝑏𝑎𝑠𝑖𝑐𝜖 ℝ𝐷×𝐷1
 for feature mapping. 

3. Initialize parameters for batch normalization 𝛽, 𝛾 and 𝜆, 𝛼 activation parameters. 

4. For each batch 𝑏 in X: 

Apply input Dropout:𝑋𝑑𝑟𝑜𝑝
(𝑏)

= 𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝑋(𝑏)) 

Compute attention maps:  

For each node i in the tensor: 

Compute pairwise node interactions:𝑍𝑖𝑗
(𝑏)

= 𝑋𝑑𝑟𝑜𝑝,𝑖
(𝑏)

⨀𝑋𝑑𝑟𝑜𝑝,𝑗
(𝑏)

 for 𝑗 = 1,2,3⋯ , 𝐿. 

Apply attention transformation: 𝐴𝑖𝑗
(𝑏)

= tanh(𝑊𝑎𝑡𝑡𝑍𝑖𝑗
(𝑏)

+ 𝑏𝑎𝑡𝑡). 

Compute attention coefficients: 𝛼𝑖𝑗
(𝑏)

= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐴𝑖𝑗
(𝑏)

𝑇⁄ ) where 𝑇 is the temperature 

Feature Projection: 

For each node i: 

Aggregate using attention:𝑌𝑎𝑡𝑡,𝑖
(𝑏)

= ∑ 𝛼𝑖𝑗
(𝑏)𝐿

𝑗=1 𝑊𝑝𝑟𝑜𝑗
𝑎𝑡𝑡 𝑋𝑗

(𝑏)
 

Direct projection:𝑌𝑏𝑎𝑠𝑖𝑐,𝑖
(𝑏)

= 𝑊𝑝𝑟𝑜𝑗
𝑏𝑎𝑠𝑖𝑐𝑋𝑗

(𝑏)
 

 Combine projections:𝑌𝑖
(𝑏)

= 𝑌𝑎𝑡𝑡,𝑖
(𝑏)

+ 𝑌𝑏𝑎𝑠𝑖𝑐,𝑖
(𝑏)

 

5. Apply Batch Normalization and Activation  

6. Return the refined feature tensor Y for the Batch 

End 

 

The Algorithm 1 outlines the operations involving tensor transformations, attention coefficient 

compotation, and feature refinement, which are critical for emphasizing the most salient features from the input 
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data. The algorithm leverages linear transformations, projection layer and non-linear activations, and 

normalization techniques to effectively enhance the feature representation for subsequent processing stages in 

the model. Here, 𝑊𝑝𝑟𝑜𝑗
𝑏𝑎𝑠𝑖𝑐 refers to projection or feature transformation without attention and 𝑊𝑝𝑟𝑜𝑗

𝑎𝑡𝑡  denotes 

feature projection with attention score.  

 

2.5.  Multi-scale feature synthesis and authenticity classification 

The proposed module, named multi-scale feature takes the output from the SAG layer and further 

processes it in a multi-scale manner, potentially applying additional attention mechanisms in a graph-based 

approach to synthesize features at a higher level of abstraction, capturing both local and global patterns within 

the feature map 𝑌𝑖
(𝑏)

, thereby enabling a more robust and comprehensive understanding of the data. The 

attention mechanism in this module adopts the same function as in SAG but executes in a layered-based 

manner. From the previous module SAG, the system obtained 𝑌𝑖
(𝑏)

 which is a result of combining features with 

attention score 𝑌𝑎𝑡𝑡,𝑖
(𝑏)

 and without attention score 𝑌𝑏𝑎𝑠𝑖𝑐,𝑖
(𝑏)

. The current module, multi-scale feature synthesis, first 

initializes two projection layers P1 and P2, which a linear model or simple neural network with layer to obtain 

two distinct transformations of input feature 𝑌𝑖
(𝑏)

, such that: 𝑌1 = 𝑃1(𝑌𝑖
(𝑏)

) and 𝑌2 = 𝑃2(𝑌𝑖
(𝑏)

). This module 

also initializes a two-aggregator node A1 and A2, which can also be considered global or aggregate 

representations influencing the entire graph structure or feature set. This module then uses attention 

mechanisms (𝑊𝑝𝑟𝑜𝑗
𝑎𝑡𝑡 ,𝑊𝑝𝑟𝑜𝑗

𝑏𝑎𝑠𝑖𝑐, 𝑊𝑝𝑟𝑜𝑗
𝑎𝑡𝑡_𝐴1

, and 𝑊𝑝𝑟𝑜𝑗
𝑎𝑡𝑡_𝐴2

) to process Y1 and Y2, considering their relationships with 

the master nodes. Here, 𝑊𝑝𝑟𝑜𝑗
𝑎𝑡𝑡 , and 𝑊𝑝𝑟𝑜𝑗

𝑏𝑎𝑠𝑖𝑐  apply transformations with and without the influence of the attention 

maps derived from the standard attention mechanism. While 𝑊𝑝𝑟𝑜𝑗
𝑎𝑡𝑡_𝐴1

 and 𝑊𝑝𝑟𝑜𝑗
𝑎𝑡𝑡_𝐴2

 are similar but specifically 

interact with the aggregator node. The aggregator nodes A1 and A2 are updated as A nodes based on the 

interactions and attention mechanisms, integrating information from Y1, Y2, and the existing state of the master 

node. After processing through attention and projection layers, the features (and potentially the master node 

representation) are aggregated. This aggregation is then passed through pooling, dropout, and batch 

normalization to generate the final output of the layer. Hence, this multi-scale feature synthesis module's 

primary purpose is to process combined input y, create two separate projections of it (Y1 and Y2), and process 

these projections through a series of attention mechanisms and linear transformations. The layer integrates 

these features with aggregator node representations, capturing local (individual feature) and global (aggregate 

or aggregator node) information. Finally, the authentication classification layer employs a linear model with 

sigmoid activation to predict the output class bonafide or spoofed. This design allows for a nuanced processing 

of features, suitable for complex data structures or multi-modal integration tasks in neural networks. Figure 4, 

illustrates an overall architecture for a proposed system designed to classify audio samples into 'Spoofed' or 

'Bonafide' classes of ASV system. The depicted architecture comprises several computing modules, each with 

a specific role in processing the input data, as discussed in the above sections.  
 
 

 
 

Figure 4. Illustrating overall architecture of the proposed system with deep feature synthesis and selective 

graph attention mechanism 
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3. RESULT AND DISCUSSION 

The design and development of the proposed system for voice spoofing attack detection is done using 

Python executed in Anaconda distribution installed on Windows core-i7. The design and training of the 

proposed model is done with GPU support as it requires substantial computational resources due to 

sophisticated neural network modules and extensive audio data samples. The performance assessment was 

strategically focused on the validation dataset due to the substantial size of the validation set, containing more 

than half the number of samples present in the training dataset. Such a volume of data provides a robust basis 

for on-the-fly validation, ensuring a comprehensive performance evaluation while optimizing computational 

resources. Even this strategy of evaluation aligns with methodologies adopted in the wider research 

community. The study considers different performance metrics for performance evaluation, a loss metric is 

used to demonstrate training performance, and equal error rate EER () and minimum tandem detection cost 

function (min t-DCF) both are used to demonstrate model performance of the validation dataset. EER is a 

metric that offers a standard measure of the trade-off between false acceptance and false rejection rates, while 

min t-DCF evaluates the system's overall performance by considering both detection effectiveness and the cost 

of errors. It is particularly relevant for systems where the trade-off between different types of errors is crucial. 

Figure 5 presents training loss as a function of epochs. The graph trend shows a decreasing trend in 

the training loss as the number of epochs increases. This indicates the model's increasing accuracy in predicting 

the correct classes over time. The initial instability is due to the model exploring the feature space, and the 

subsequent steady decline in loss suggests that the model is converging towards an optimal set of parameters. 

The TRU and SAG module's ability to extract and synthesize features at multiple scales plays a crucial role in 

the model's learning efficiency, as they enable the model to capture both fine-grained and abstract 

representations of the data, essential for accurate spoofing detection.  

 

 

 
 

Figure 5. Analysis of training loss over epochs 

 

 

Figure 6 presents EER analysis over progressive epochs, and the graph trend exhibits EER is highest 

at the first few epochs, indicating a relatively poor balance between false acceptances and false rejections at 

the beginning of training. Further, at the 5th epoch, there is a declining trend in EER, indicating a significant 

improvement in model performance. The model is b ecoming more adept at balancing false acceptances and 

rejections, enhancing its overall reliability in distinguishing genuine from spoofed samples. The reason behind 

initial fluctuations could be due to the fact that the model's adjustments to the complexity of the task, while the 

later stabilization indicates the efficacy of the proposed TRU and SAG modules in refining feature extraction 

and attention-weight optimization, resulting in a more consistent performance.  

Figure 7 shows an analysis of the TDCF metric for evaluating the model's performance in terms of 

the cost of false positives and false negatives. The graph illustrates that the min t-DCF value is initially high, 

indicating a greater cost associated with the detection decisions. But after a few epochs decline trend is found, 

signifying a rapid improvement in the model's detection capabilities and cost-efficiency. Also, some variability 

in the curve can be seen with a slight increasing and decreasing trend. This suggests that while the model tries 

to learn optimal features by the SAG module, which leads to recurrent fluctuation when it gets optimal 

concatenated features in the multi-scale feature synthesis module, it leads to a better and consistent trend.  

Table 2 presents a comparative analysis to demonstrate the proposed system's effectiveness compared to similar 

approaches in terms of EER and t-DCF scores.  
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Figure 6. Analysis of EER over progressive epochs 

 

Figure 7. Analysis of t-DCF over progressive 

epochs 

 

 

Table 2. Comparative analysis 
Methods EER (%) t-DCF 

Jung et al. [29] 0.96 0.0244 

Wei et al. [30] 1.85 0.0589 

Ouyang et al. [31] 3.44 0.0800 
Proposed 0.503 0.015 

 

 

Based on the outcome analysis of Table 2, the proposed system outperforms other similar methods. 

With achieving an EER of 0.503% and a t-DCF of 0.015, it demonstrates its effectiveness in spoofing detection, 

indicating a more robust detection capability. Jung et al. [29] presented a deep learning approach with  

high-resolution spectrograms, focusing on the direct input of spectrograms without knowledge-based 

intervention. High-resolution spectrograms can capture finer details and introduce noise or irrelevant 

information, potentially leading to misclassification. The approach suggested in [30] used acoustic features 

obtained from linear prediction residual signals and harmonic noise sub-band ratios. These features aim to 

capture the interaction differences between the vocal tract in genuine and spoofed speech. However, this 

method struggled with the inherent symmetry between genuine and spoof speech, making it challenging to 

distinguish between them consistently. While work done by [31] explores the applicability of capsule networks 

for replay attack detection. Capsule networks have shown effectiveness in forged image and video detection 

but may not capture the complex temporal relationships present in audio signals, which are crucial for 

distinguishing between genuine and spoofed speech. On the other hand, the proposed system incorporates a 

novel integration of waveform encoder and TRU, followed by a selective graph attention mechanism, which 

offers several advantages over the existing approach, such as robust spectral-temporal feature extraction using 

waveform encoder and LSTM with skipped connection, graph-based feature processing, attention-based 

feature importance and extraction of refined feature as an indicative attribute of spoofed signal by multi-scale 

analysis. Hence, with the advanced feature synthesis process, the proposed system gets superior generalization 

capabilities that adapt its learning to the evolving nature of spoofing attacks.  

 

 

4. CONCLUSION 

This study has introduced a novel framework for detecting replay attacks on ASV systems. The 

proposed research work has shown that by integrating spectral-temporal feature extraction with graph-based 

attention mechanisms, a significant improvement can be achieved in the detection task of sophisticated 

spoofing attempts. The proposed system basically presented a design of comprehensive and advanced neural 

network architecture in which the initial module, namely waveform encoder, utilizes SincNet for precise 

spectral feature extraction integrated with a novel TRU module that consists of LSTM networks with residual 

connections retaining the temporal dependencies along with spectral information, which is crucial for 

distinguishing latent cues of spoofing attempts in input audio signal. The study then designed a SAG layer, a 

joint approach of graph-based feature processing and attention-based feature refinement. The study then 

strategically implements an additional layer of multi-scale feature synthesis where a graph aggregator node is 

defined with a multi-scale attention layer to collectively refine and synthesize features at multiple scales, 

attentively focusing on the most discriminative aspects of the audio signals. The proposed study shows the 
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potential of graph-based architecture and attention-based mechanisms in enhancing the interpretability and 

focus of specialized neural network models for security-critical applications such as ASV. The results confirm 

the effectiveness of the proposed system against current state-of-the-art methods concerning both EER and  

t-DCF metrics. Future work will focus on enhancing the model's scalability and exploring the integration of 

the reinforcement learning-driven agent model.  
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