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 With cyber threats becoming increasingly sophisticated, existing intrusion 

detection systems (IDS) in next generation networks (NGNs) are subjected to 

more false-positives and struggles to offer robust security feature, highlighting 

a critical need for more adaptive and reliable threat detection mechanisms. 

This research introduces a novel IDS that leverages a dueling deep Q-network 

(DQN) a reinforcement learning algorithm within game-theoretic framework 

simulating a multi-agent adversarial learning scenario to address these 

challenges. By employing a customized OpenAI Gym environment for 

realistic threat simulation and advanced dueling DQN mechanisms for 

reduced overestimation bias, the proposed scheme significantly enhances the 

adaptability and accuracy of intrusion detection. Comparative analysis against 

current state-of-the-art methods reveals that the proposed system achieves 

superior performance, with accuracy and F1-score improvements to 95.02% 

and 94.68%, respectively. These results highlight the potential scope of the 

proposed adaptive IDS to provide a robust defense against the dynamic threat 

landscape in NGNs.  
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1. INTRODUCTION 

The communication network landscape has witnessed a transformative shift from static, circuit-

switched models to dynamic, data-centric architectures. Although traditional networks have established global 

connections, they faced challenges such as limited bandwidth, and scalability issues [1]. The advent of wireless 

sensor networks (WSNs) brought enhanced data gathering capabilities, but has been hampered by limited 

processing power and energy constraints [2]. The internet of things (IoT) era further changed these network 

paradigms, consisting vast amounts of smart devices that gathers and generate data, often disregarding security 

measures [3]. As a result, the security scenario has become increasingly vulnerable to advanced cyber threats 

[4]. In the near future, the IoT ecosystem will continue to evolve and can be regarded as called next generation 

networks (NGN) providing greater flexibility, and adaptability by integrating various network elements such 

as software-defined networking (SDN), network virtualization, cloud integration, and artificial intelligence 

(AI)-powered algorithms [5]. However, NGNs also brings its own vulnerabilities, as the threat landscape in 

NGNs is not only limited to the vast connected devices, but also includes sophisticated attack strategies. The 

distributed aspect of NGNs opens multiple points for attacks, and the incorporation of diverse devices presents 

new exploitation risks. Advanced threats like botnets, zero-day exploits, and targeted attacks present serious 

challenges, risking critical infrastructure disruption, data breaches, and significant economic impacts [6]. 

https://creativecommons.org/licenses/by-sa/4.0/
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In the context of network security, traditional approaches have primarily focused on bounded defense 

mechanisms, such as firewalls, antivirus software, and encryption [7], [8]. These solutions, while effective in 

a more controlled network environment, often fall short in addressing the dynamic nature of NGNs. The 

traditional methods tend to be reactive rather than proactive, addressing threats only after they have breached 

the network. Encryption, while vital for data protection, does not protect against active intrusions targeting 

network infrastructure [9]. The conventional approaches are increasingly inadequate in the face of advanced 

persistent threats (APTs) and other sophisticated attacks that can evade standard detection mechanisms. 

Intrusion detection systems (IDS) have emerged as a critical component in safeguarding wireless networks. 

Unlike traditional security measures, IDS offer a more dynamic and proactive approach [10]. They are designed 

to detect and respond to unusual or suspicious activities within the network, providing an additional layer of 

security that can adapt to the evolving landscape of cyber threats. The advantage of IDS in NGNs is that it can 

continuously monitor network traffic and system activities and identify potential threats in real time. However, 

traditional security solutions, including traditional IDS, often struggle to keep up with the rapid development 

of NGN. These systems often rely on predefined rules or signatures to detect threats, an approach that becomes 

less effective as attack patterns evolve and become more complex [11], [12]. Additionally, the large amounts 

of data generated by NGNs may overwhelm traditional security methods, resulting in high false alarm rates 

and missed detections. 

In the recent state of art work, the research trends have seen a shift towards leveraging machine learning 

(ML) and deep learning (DL) techniques in network security. For example, Su et al. [13] tackled traditional IDS 

limitations like low accuracy and manual feature engineering dependency by integrating DL long short-term 

memory (LSTM) model with an attention mechanism, enabling automatic key feature learning. Similarly, 

Sumadi et al. [14] proposed an approach to combat distributed denial of service (DDoS) attacks, combining 

honeypot sensors with SDN and employing semi-supervised learning with support vector machine (SVM) and 

adaptive boosting for attack classification. Addressing DDoS threats further, Mohammed et al. [15] explored 

the use of two neural network models with distinct configurations. Tackling the challenge of class imbalance 

in IDS development, Martin et al. [16] utilized a custom radial basis function (RBF) neural network.  

Saikam and Koteswararao [17] also addressed class imbalance by merging deep networks with hybrid 

sampling, employing generative adversarial networks (GAN), DenseNet169 for spatial feature extraction, and 

self attention for temporal aspects. They further applied a spike neural network for classification. Another 

approach by Aljehane et al. [18] incorporated the golden jackal optimization algorithm within an LSTM 

architecture for automated feature selection and optimal classification. The adoption of ML and DL approaches 

in IDS offer significant improvements over traditional rule-based IDSs, particularly in their ability to learn and 

adapt to new threats, uncovering patterns and anomalies that may indicate a security breach. However, most of 

these methods adopts supervised learning, highly rely on labeled data and are also prone to class imbalance 

problems. Dependency on extensive, well-labeled datasets can be a significant bottelneck, while imbalanced 

classes often introduces biases in the learning process.  

Among the various AI methodologies, reinforcement learning (RL) has shown considerable promise 

in revolutionizing IDS for NGN. RL differs from other ML and DL approaches in its ability to learn optimal 

actions through trial and error interactions with a dynamic environment [19]. RL-driven IDSs are particularly 

well-suited to the ever-changing landscape of network security, where the system must continuously adapt to 

new threats. In past five years significant research works have been done in the context of RL driven IDS. 

Dong et al. [20] explored abnormal traffic detection in network security, using an autoencoder and double deep 

Q-network (DQN) for traffic feature reconstruction and classification, alongside K-means clustering is applied 

for target network training. They demonstrate effectiveness using network security lab-knowledge discovery 

in databases (NSL-KDD) and Aegean Wi-Fi intrusion dataset (AWID) datasets but overlook model complexity 

for resource-constrained devices. Lu et al. [21] introduce a deep self-encoding model with missing 

measurement weights and a unique oversampling algorithm for enhanced attack detection, though scalability 

remains a concern. Li et al. [22] address unbalanced datasets and minority attack identification through 

adversarial environment learning and a soft actor-critic RL algorithm, focusing on data resampling and tailored 

reward values for specific attacks. Ren et al. [23] enhance IDS efficacy by utilizing recursive feature 

elimination (RFE) and deep Q-learning for feature selection, though usage of RFE may omit crucial features 

for complex attack identification. Yu et al. [24] combine a DQN with a variational auto-encoder for traffic 

classification and unknown attack recognition in industrial IoT. The work in similar direction can be also seen 

by Sethi et al. [25]. They critique existing IDSs for inaccuracy and performance issues against unseen attacks, 

proposes a solution using DQN-based distributed agents with attention mechanisms and a denoising 

autoencoder for robustness. However, these scheme may struggle with the computational complexity 

introduced by the integration of DQN and auto-encoder. Benaddi et al. [26] employed stochastic game theory 

and Markov decision processes (MDP) to model the interaction between IDS and attackers. He et al. [27] 

introduces a transformative approach combining deep RL with strategies to prioritize outliers without 

classifying the entire dataset to prioritize outliers without classifying the entire dataset transferability and 
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adaptability with fewer samples for intrusion detection. Feng et al. [28] proposed a collaborative DDoS 

detection method using a soft actor-critic learning model, featuring a collaborative aggregation module and a 

unique reward mechanism. Soltani et al. [29] suggest adapting DL models to changing traffic behaviors using 

federated learning and sequential packet labeling. Alavizadeh et al. [30] introduce an IDS method combining 

Q-learning with a deep feed-forward neural network, featuring a DQN model for auto-learning. However, this 

method may face challenges in real-time adaptation to rapidly evolving attacks and maintaining computational 

efficiency in dynamic network environments. The literature review reveals that researchers have proposed 

various schemes using RL-based IDS to counter sophisticated cyber attacks. However, despite many efforts, a 

significant research gap persists in effectively applying RL to IDS in NGN. The followings are the highlights 

of the significant research problem.  

– Overestimation in DQN: existing approaches frequently employed the DQN algorithm, which struggles 

with the state explosion problem and tends to overestimate Q-values. This overestimation, stemming from 

the max operation in Q-learning updates, can lead to suboptimal policy learning. 

– Challenges in double DQN implementation: although some studies have adopted the double DQN 

algorithm to mitigate DQN's overestimation bias, fine-tuning its hyperparameters for effective self-

learning and interaction with network environments remains a substantial challenge. 

– Focus on detection performance: many IDS designs based on double DQN concentrate primarily on 

enhancing detection capabilities compared to Q-learning and DQN, without adequately differentiating the 

value of specific states from the value of actions within those states. 

– Design optimization: there is a lack of comprehensive studies on optimizing double DQN to more 

accurately evaluate state values and improve learning efficiency. Most current works do not provide 

detailed optimization strategies or dependent on certain assumptions about network characteristics. 

– Simulation-based environments and their limitations: the use of simulation-based approaches, such as 

Monte Carlo simulations, in many RL-based IDS models does not offer a realistic representation of 

network ecosystems. A need for more realistic, benchmarked environments, possibly using OpenAI Gym, 

is identified for effective agent training and evaluation. 

Therefore, this paper proposes an advanced IDS framework to address the above-mentioned research 

gaps by utilizing a multi-agent RL approach and combined with an adaptive learning scheme leveraging  

game-theoretic approach. This framework is designed to detect and respond to cyber threats in complex 

network environments like NGNs. The key contribution of the proposed work is as follows:  

– This paper presents a adversarial model through development of multi-agent algorithm utilizing a game-

theoretic approach, making defender agent dynamic to continuously learn and adapt its strategies against 

evolving attack patterns by attacker agent, thereby enhancing the robustness and effectiveness of the IDS. 

– Unlike existing works, the proposed framework adopts dueling DQN mechanism in multi-agent algorithm 

to overcome problem of state overestimation bias and optimizing the learning process by efficiently 

evaluating state values and action advantages. This approach is particularly beneficial in the dynamic 

environment of NGNs, ensuring more effective decision-making process. 

– The proposed work also presents a customized environment leveraging the functionalities of the OpenAI 

Gym, a benchmark tool for simulating the complexities and dynamic nature of NGNs. The proposed 

custom environment represents realistic network traffic patterns and behaviors, enhancing the agents' 

exploration and decision-making capabilities, and leading to more effective detection strategies. 

The novelty of the proposed research work is the introduction of multi-agent in adversarial learning setup, 

adoption of dueling DQN for enhanced adaptability in NGNs. It uniquely combines realistic adversarial 

modeling and a customized OpenAI Gym environment as an effective IDS in dynamic and responsive network 

security against evolving cyber threats. 

 

 

2. METHOD 

This research introduces a novel IDS design for NGNs that leverages the dynamic and adaptive 

capabilities of multi-agent RL. By integrating a game-theoretic framework, the proposed IDS can simulate 

realistic adversarial scenarios, where defender and attacker agents continuously evolve their strategies. The 

objective is to create an IDS that not only effectively detects cyber threats but also adapts and evolves in 

response to emerging threats, providing a significant enhancement over traditional IDS solutions. 

 

2.1.  Reinforcement learning 

RL is a subtype of ML where an agent model interacts with an environment, observes states, and takes 

actions to maximize long-term rewards. The agent is the decision-making entity, while the environment 

regarded as task scenario mimicking problem, which provides the states and rewards that inform the agent's 

decisions. Figure 1 illustrates the typical architecture of this agent-environment interaction. 
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Figure 1. Typical architecture of RL 

 

 

Figure 1 depicts the fundamental interaction cycle of RL, where an agent makes decisions by taking 

actions (𝐴𝑡) in response to the environment's states (𝑆𝑡) to maximize cumulative rewards (𝑅𝑡). The environment 

post interaction evaluates the actions being taken by agent and updates the agent with new states (𝑆𝑡+1) and 

corresponding rewards (𝑅𝑡+1), facilitating a sequential decision-making problem and continuous learning 

process. The core operation of RL operates under the mathematical framework of MDP where the decision-

making actions have stochastic consequences and feedbacks are received over time, depending on the current 

state and the chosen action. 

The mathematical framework of MDP is characterized by tuple 𝑀 = {𝑆, 𝐴, 𝑃, 𝑅, 𝛾}, where 𝑆 denotes 

set of all possible states in the environment, 𝐴 is a set of all possible actions the agent can take, 𝑃 defines the 

probability 𝑃(𝑆𝑡+1|𝑠𝑡 , 𝑎𝑡) of transitioning from state 𝑠𝑡 to state 𝑠𝑡+1 after taking action 𝑎𝑡, 𝑅 immediate reward 

𝑟 received after transitioning from state 𝑠𝑡 to state 𝑠𝑡+1 due to action 𝑎𝑡 and 𝛾 is discount factor. The prime 

goal of the agent is to discover a policy 𝜋 that maps states to actions, maximizing the cumulative reward over 

time. The policy 𝜋(𝑎 ∣ 𝑠) denotes the probability of taking an action 𝑎 in state 𝑠, and the value of following a 

policy from a specific state is computed by the action-value function 𝒬𝜋(𝑠, 𝑎) as (1). 
 

𝒬𝜋(𝑠, 𝑎) = 𝔼[𝑅𝑡+1 + 𝛾 𝒬𝜋(𝑆𝑡+1, 𝐴𝑡+1)|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] (1) 
 

Where 𝒬𝜋(𝑠, 𝑎) is action-value function, 𝛾 ranges between 0 and 1, determines the present value of future 

rewards, reflecting the trade-off between immediate and future rewards, and 𝒬𝜋 refers to optimal policy value. 

The optimal policy 𝜋∗ is the one that maximizes the action-value function across all states. 
 

𝜋∗ = arg 𝑚𝑎𝑥𝜋  𝒬𝜋(𝑠, 𝑎) (2) 
 

To compute 𝒬 values without a model of the environment i.e., in model-free scenarios such as Q-learning, the 

agent learns the optimal action-value function 𝒬∗ without knowledge of P and R and seeks to learn the optimal 

action-value function directly using the Bellman (3). 
 

𝒬𝜋(𝑠𝑡 , 𝑎𝑡) ← 𝒬𝜋(𝑠𝑡 , 𝑎𝑡) + 𝛼[𝑟𝑡+1 + 𝛾 𝑚𝑎𝑥𝑎′  𝒬(𝑠𝑡+1, 𝑎′) − 𝒬(𝑠𝑡 , 𝑎𝑡)] (3) 
 

Here, 𝒬𝜋(𝑠𝑡 , 𝑎𝑡) is the current estimated Q-value for a given state-action pair, 𝛼 is the learning rate, 𝑟𝑡+1is the 

reward received after taking an action at in state st and transitioning to state 𝑠𝑡+1 and the term 

𝑚𝑎𝑥𝑎′  𝒬(𝑠𝑡+1, 𝑎′) represents the estimate of the optimal future value. The updating process of the Q-value is 

iterative and continues until the policy converges to the optimal policy 𝜋∗, which dictates the best action to 

take in every state.  

 

2.2.  Dueling deep Q-network 

The proposed study adopts the dueling DQN algorithm for agent modeling, aiming to refine the 

estimation of state-action value functions (Q(s,a)) in complex environments like NGNs and IoT, characterized 

by rich state-action spaces. In the context of RL-based IDS, existing approaches predominantly utilized DQN 

or double DQN. The DQN model, while widely used, has a tendency to overestimate Q-values, which can lead 

to the formulation of suboptimal policies. Double DQN, though it addresses this overestimation by using two 

neural networks (current and target Q-networks), does not effectively discriminate between the value of states 

and actions. Additionally, it faces slow convergence and not much efficient to capture latent or minute 

differences in state-action pairs. Dueling DQN is preferred for its unique ability to differentiate between state 

values and action advantages, thereby precisely estimates state-action value which is crucial in complex 

settings like NGNs, where precise assessment of each state-action pair is fundamental to effective intrusion 

detection. Figure 2 presents the architecture of dueling DQN, illustrating how the algorithm splits the 

estimation process into two streams: one for evaluating the state value and another for assessing the advantage 

of actions.  
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Figure 2. Architecture of dueling DQN 

 

 

As depicted in Figure 2, the dueling DQN comprises an input layer that takes the current state of the 

environment as input. Afterwards, a fully-connected hidden layer is responsible for extracting features from 

the input state. Further it decomposes into two sub-networks for the separate estimation of state values V(a) 

and action advantages F(s,a). The sub-network subjected to value function V(s) represents the scalar value of 

the state and computes the value function, which estimates how good it is to be in a given state s, regardless of 

the action taken. The second sub-network F(s,a) computes the advantage function for each action a given the 

states using (4). 

 

𝐴(𝑠, 𝑎; 𝜃, 𝛼) = 𝒬(𝑠, 𝑎; 𝜃, 𝛼, 𝛽) − 𝑉(𝑠; 𝜃, 𝛽)  (4) 

 

Where 𝜃 denotes the parameters of the shared neural network layers, while α and β are the parameters of the 

advantage and value function, respectively. The advantage function indicates the relative benefit of taking a 

particular action compared to the average action in the current state. Before producing the final Q-value for a 

state-action pair, the network aggregates the value and advantage estimates using (5). 

 

𝒬(𝑠, 𝑎; 𝜃, 𝛼, 𝛽) = 𝑉(𝑠; 𝜃, 𝛽) + (𝐴(𝑠, 𝑎; 𝜃, 𝛼) −
1

|𝒜|
∑ 𝐴(𝑠, 𝑎′; 𝜃, 𝛼)𝑎′ ) (5) 

 

Where A represents the action space, and ∣𝒜∣ is the number of actions. To stabilize the learning process and 

ensure the identifiability of the value function, the advantage function estimator is modified by subtracting the 

mean advantage of all possible actions. The proposed study aims to maximize the expected cumulative reward 

from a state 𝑠, represented by the value function 𝑉𝜋(𝑠) under a policy π, expressed as (6). 

 

𝑉𝜋(𝑠) = 𝔼[∑ 𝛾𝑘ℛ(𝑆𝑡+𝑘, 𝐴𝑡+𝑘)|𝑆𝑡 = 𝑠∞
𝑘=0 ] (6) 

 

Hence, the research problem is to optimize the parameters θ, α, β to maximize the expected cumulative reward 

by learning an optimal policy π∗. This is subject to the constraints imposed by the dueling DQN architecture 

for the estimation of Q-values. The optimization problem can be formulated as (7) and (8). 

 

𝑚𝑎𝑥∞,𝛼,𝛽𝑉𝜋(𝑠) (7) 

 

𝜃, 𝛼, 𝛽 ← 𝜃, 𝛼, 𝛽 + η ∇𝜃,𝛼,𝛽𝑉𝜋(𝑠) (8) 

 

The (8) shows that during the learning process, parameters θ, α, β are adjusted through gradient ascent on the 

expected cumulative reward, where η is the learning rate. The learning process is constrained by the 

architecture of dueling DQN, which separates the estimation of the value of being in a state from the estimation 

of the advantage of taking specific actions in that state. To achieve the optimization objectives, the parameters 

are tuned by minimizing the loss function. 

 

ℒ(𝜃, 𝛼, 𝛽) = 𝔼 [(𝑦𝑖 − 𝒬(𝑠, 𝑎; 𝜃, 𝛼, 𝛽))
2

] (9) 
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Where 𝑦𝑖  is the target Q-value calculated using a variant of the Bellman (9). The optimization is considered 

converged when updates to θ, α, β result in minimal changes to the value function 𝑉𝜋(𝑠), indicating that the 

policy π is near-optimal or optimal.  

 

2.3.  Game theoretic framework 

The proposed study presents a multi-agent IDS system incorporating game theory to model strategic 

interactions between cyber attackers and defenders. Within this IDS framework, cyber conflict is 

conceptualized as a game where the attacker seeks to compromise the system, and the defender aims to prevent 

breaches. The defender and attacker use their respective utility functions to evaluate and optimize their 

strategies. In the proposed dueling DQN based IDS implementation, both the attacker and defender agents are 

trained to maximize their respective utility functions. The defender's agent is trained to minimize the impact of 

attacks, while the attacker's agent aims to find successful attack strategies. The interaction between the defender 

and attacker is dynamic, allowing for continuous adaptation and learning. The dueling DQN estimates state-

action value functions for both for both the attacker and defender, expressed as (10). 

 

{
𝐷𝑒𝑓𝑒𝑛𝑑𝑒𝑟: 𝑄𝑑(𝑠, 𝑎; 𝜃𝑑 , 𝛼𝑑, 𝛽𝑑)

𝐴𝑡𝑡𝑎𝑐𝑘𝑒𝑟: 𝑄𝑎(𝑠, 𝑎; 𝜃𝑎, 𝛼𝑎 , 𝛽𝑎)
 (10) 

 

Where, 𝑄𝑑 and 𝑄𝑎 are the action-value function for the defender and attacker, respectively. Both represents the 

expected reward for taking a specific action 𝑎 in a given state 𝑠, based on the current policy. This value is an 

estimation of the total amount of reward (cumulative reward) the defender and attacker can expect to 

accumulate over the future, starting from state 𝑠 and taking an action 𝑎. Therefore, the objective for each agent 

is to maximize its expected cumulative reward, and the (10) can be modified as (11). 

 

{
𝐷𝑒𝑓𝑒𝑛𝑑𝑒𝑟: 𝑉𝑑

𝜋(𝑠) = 𝔼[∑ 𝛾𝑘ℛ𝑡
𝑑(𝑆𝑡+𝑘, 𝐴𝑡+𝑘)|𝑆𝑡 = 𝑠∞

𝑘=0 ]

𝐴𝑡𝑡𝑎𝑐𝑘𝑒𝑟: 𝑉𝑎
𝜋(𝑠) = 𝔼[∑ 𝛾𝑘ℛ𝑡

𝑎(𝑆𝑡+𝑘, 𝐴𝑡+𝑘)|𝑆𝑡 = 𝑠∞
𝑘=0 ]

 (11) 

 

Where, ℛ𝑑 and ℛ𝑎 are the reward functions for the defender and attacker, respectively. The parameters 

𝜃𝑑,𝛼𝑑 , 𝛽𝑑 for the defender and 𝜃𝑎, 𝛼𝑎, 𝛽𝑎 for the attacker are adjusted using gradient ascent described in the 

above (8) on the expected reward, enabling each agent to learn and adapt its strategy. 

 

2.4.  Dataset adopted  

The dataset adopted in the proposed study is the NSL-KDD dataset, a labeled dataset widely adopted 

in the research community and established as a standard benchmark for network intrusion detection. Frequently 

employed to evaluate the performance of various IDS, the NSL-KDD dataset contains millions of labeled data 

points, each representing network connections categorized into normal behavior and various attack types (DoS, 

U2R, R2L, and Probe). The dataset mirrors real-world network traffic, consisting a mix of normal and 

anomalous activities, and features are derived from TCP/IP connection characteristics, providing a realistic 

challenge for detection algorithms. Moreover, this dataset is used to model the RL environment using Open-

AI Gym functionalities. Table 1 summarizes the characteristics and distribution of class samples. 

 

 

Table 1. NSL-KDD data-record classes 
Categories Definitions Samples # 

Normal (0) Typical user behavior on the network 77054 

DoS (1) Attacks aimed at service unavailability 53385 

Probe (2) Network scanning and vulnerability mapping attempts 14077 
R2L (3) Unauthorized access attempts by a remote machine to gain local user privileges 3749 

U2R (4) Unauthorized access attempts by users to gain root privileges 252 

 

 

2.5.  Proposed system implementation  

In the above sections, the study discusses core technologies and design considerations adopted in the 

proposed multi-agent driven IDS. The system utilises a duel DQN architecture for NGNs. In addition, this section 

details implementation methodology emphasizing proposed customized environment and multi-agent modelling. 

 

2.5.1. Customized environment using Open-AI Gym for IDS simulation in NGNs 

The proposed system introduces NGNEnv, a custom environment for IDS that harnesses the OpenAI 

Gym interface to simulate the intricate dynamics of NGNs. Open-AI Gym is an open-source and benchmarked 

tool for developing and comparing RL algorithms [31]. It offers a standardized set of environments for 
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implementing and testing various RL models. This simulation uses the NSL-KDD dataset to create a realistic 

network traffic environment for the IDS. Incorporating Open-AI Gym in our study enhances the development 

and evaluation of advanced IDS models. Its ability to simulate realistic network environments, combined with 

the flexibility to incorporate complex game-theoretic approaches, providing a consistent interface for RL 

algorithms, making it easier to compare the effectiveness of different models under similar conditions. The 

modelling of the environment consists of following core components.  

– State space: The state space, 𝑆, includes normalized features representing network traffic data such that 

𝑆 = {𝑠1, 𝑠2, 𝑠3 … , 𝑠162} ∈ ℝ𝓃, where each 𝑠𝑖 is a normalized and standardized data samples representing 

network traffic with 𝓃 number of features in the NSL-KDD dataset. 

– Action space:The discrete action space 𝐴, for the defender agent includes five possible actions 

corresponding to IDS classifications, such that A𝑑={0,1,2,3,4} where each action represents a 

classification decision by the IDS on attack categories as shown in Table 1. Similarly, the attacker agent's 

action space comprises 23 discrete actions such that: A𝑎 = {0,1,2, … ,22} as shown in Table 2. 

 

 

Table 2. Number of actions taken by attacker agent A𝑑 
Action index Attack type Description 

0 normal Normal network traffic 
1 back Denial-of-service attack that floods target with reflected packets 

2 land Denial-of-service attack with source and destination addresses set to same host 

3 neptune Denial-of-service attack flooding with UDP packets from random source ports 
4 pod Denial-of-service attack flooding with TCP packets from random source ports 

5 smurf Denial-of-service attack using ICMP echo request from spoofed source address 
6 teardrop Denial-of-service attack fragmenting TCP packet to trigger reassembly errors 

7 ipsweep Reconnaissance attack scanning for active hosts on a network 

8 nmap Port scanning tool for identifying open ports and services 
9 portsweep Reconnaissance attack scanning for open ports on a network 

10 satan Port scanning tool with additional service identification capabilities 

11 ftp_write Malicious attempt to write to a file on an FTP server 
12 guess_passwd Brute-force attack attempting to guess user passwords 

13 imap Unauthorized access attempt to an IMAP server 

14 multihop Indirect attack routing through multiple machines to hide attacker origin 

15 phf Port scan using SYN packets with various flags set 

16 spy Attempt to gain unauthorized access to a system for information gathering 

17 warezclient Downloading pirated software content 
18 warezmaster Distributing pirated software content 

19 buffer_overflow Attempt to exploit a buffer overflow vulnerability for code execution 

20 loadmodule Attempt to load and execute malicious code as a kernel module 
21 perl Attempt to execute malicious Perl script 

22 rootkit Attempt to install a rootkit for unauthorized access and control 

 

 

– Reward mechanism: The reward function ℛ𝑡 is designed to incentivize each agent for their action. The 

study adopts binary reward scheme, whether the defender's action matches the attacker's action or not. The 

rewards take the value 1 for a correct match and 0 otherwise. Mathematically expressed as (12) and (13).  

 

Defender's Reward:ℛ𝑡
𝑑 ← {

1 if defender_actions = attack_actions
0                                                  Otherwise

  (12) 

 

Attacker's Reward: ℛ𝑡
𝑎 ← {

1 if defender_actions ≠ attack_actions
0                                                  Otherwise

  (13) 

 

The proposed NGNEnv also consists of two modules such as episode termination and reset 

functionality. The environment simulation runs for a certain number of steps, each step corresponding to a 

single row or event in the dataset. An episode ends when all the events in the dataset have been presented to 

the agent, which simulates the process of monitoring network traffic over a period. The reset function is 

responsible for reinitializing the environment to its starting condition, which allows the agent to start learning 

a new cycle of the network traffic monitoring. 

 

2.5.2. Proposed multi-agent model using duelling deep Q-network 

The proposed environment NGNEnv simulates the multi-agent system with defender agent that 

detects intrusions and an attacker agent for adversarial attempts, both utilizes dueling DQN architecture to 

evolve optimal counter strategies. Algorithm 1 outlines the computational steps for this adversarial IDS 

framework in NGNs. The operational parameters for both agents include a standardized input features  
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𝑋 ∈ ℝ𝓂×𝓃 and label 𝑌 ∈ {0,1,2 … 22}𝓂 along with the exploration rate (ε), discount factor (γ), and an 

experience replay mechanism. After successful execution, it returns optimal policy value for taking best actions. 

 

Algorithm 1: Adversarial learning using dueling DQN for intrusion detection 

Input: 𝒟 dataset with features 𝑋 ∈ ℝ𝓂×𝓃 and 𝑌 ∈ {0,1,2 … 22}𝓂, where 𝓂 number of features and 𝓃 number 

of samples; Θ parameters for dueling DQN model for defender (Θ𝑑) and attacker Θ𝑎; 𝛾 discount factor for 

future reward for both attacker 𝛾𝑎 and defender 𝛾𝑑 and 𝜀 initial exploration 𝜀𝑑 and 𝜀𝑎.  

Output: Optimal policy 𝜋𝑑
∗  for defender and 𝜋𝑎

∗  for the attacker 

Start  

1. Environment Initialization: 

Standardize features in D to obtain state space S with 𝑆 ⊂ ℝ𝓃 

   Define action space: 

       Defender 𝐴𝑑 = {0, ⋯ ,4} 

       Attacker  𝐴𝑎 = {0, ⋯ ,22} 

    Initialize dueling DQN network parameter Θ𝑑and Θ𝑎 with random weights 

2. For each episode𝑒 = 1 to 𝐸: 
   Initialize the initial environment state 𝑠0 by selecting a random sample form 𝒟.  

For each timestep𝑡 = 1 to 𝑇:, where T is the maximum number of timesteps per episode 

Select Actions: 

                For the defender agent : 𝑎𝑡
𝑑 = {

random ( 𝐴𝑑)                      with probability 𝜀𝑑

arg max
𝑎∈𝐴𝑑

𝒬𝑑(𝑠𝑡 , 𝑎; Θ𝑑) otherwise  

                For the attacker  agent : 𝑎𝑡
𝑎 = {

random ( 𝐴𝑎)                      with probability 𝜀𝑑

arg max
𝑎∈𝐴𝑎

𝒬𝑎(𝑠𝑡 , 𝑎; Θ𝑎) otherwise  

        Apply action 𝑎𝑡
𝑑 and 𝑎𝑡

𝑎 to the environment and receive new state (𝑠𝑡+1) and rewards 𝑟𝑡
𝑑, 𝑟𝑡

𝑎 

Update state: 𝑆𝑡 ← 𝑠𝑡+1 

Store Transition:(𝑠𝑡 , 𝑎𝑡
𝑑 , 𝑟𝑡

𝑑 , 𝑠𝑡+1) in replay buffer 𝐷𝑑 and (𝑠𝑡 , 𝑎𝑡
𝑎, 𝑟𝑡

𝑎 , 𝑠𝑡+1) in buffer 𝐷𝑎. 

Sample minibatch and Update Dueling DQN Models:  

Sample minibatch from 𝐷𝑑 and 𝐷𝑎 

Compute the largest Q-values for the 𝑠𝑡+1 for both agents using the temporal difference target 

𝑦𝑡
𝑑 =  𝑟𝑡

𝑑 + 𝛾𝑑  𝑄𝑑𝑎′
𝑚𝑎𝑥 (𝑆𝑡+1, 𝑎′; Θ𝑑

−)&𝑦𝑡
𝑎 =  𝑟𝑡

𝑎 + 𝛾𝑎  𝑄𝑎𝑎′
𝑚𝑎𝑥 (𝑆𝑡+1, 𝑎′; Θ𝑎

−) 

         Perform gradient descent step to update Θ𝑑 and Θ𝑎 by minimizing the expected loss :  

Θ𝑑 ← Θ𝑑 − 𝛼𝑑 × ∇ Θ𝑑ℒ(Q𝑑(𝑠𝑡 , 𝑎𝑡
𝑑 ; Θ𝑑)𝑦𝑡

𝑑)&Θ𝑎 ← Θ𝑎 − 𝛼𝑎 × ∇ Θ𝑎ℒ(Q𝑎(𝑠𝑡 , 𝑎𝑡
𝑎; Θ𝑎)𝑦𝑡

𝑎) 

Update Target Networks:  

         Every 𝑇 steps, update the target network parameters using the soft update rule 

Θ𝑑
− ← 𝜏Θ𝑑 + (1 − 𝜏)Θ𝑑

−&Θ𝑎
− ← 𝜏Θ𝑎 + (1 − 𝜏)Θ𝑎

− 

   Policy Improvement: Update the ∈-greedy exploration rates for both the defender and attacker 

𝜖𝑑 ← 𝑚𝑎𝑥(∈𝑑,𝑚𝑖𝑛 , ∈𝑑× 𝑑𝑒𝑐𝑎𝑦𝑑)&𝜖𝑎 ← 𝑚𝑎𝑥(∈𝑎,𝑚𝑖𝑛 , ∈𝑎× 𝑑𝑒𝑐𝑎𝑦𝑎) 

                                Where ∈𝑑,𝑚𝑖𝑛 and ∈𝑎,𝑚𝑖𝑛 are the minimum exploration rates 

Terminal State Check: If 𝑆𝑡+1 is a terminal state or 𝑡 equals the maximum number of timesteps 𝑇 

       Reset the environment: 𝑆𝑡 + 1 ← 𝑟𝑒𝑠𝑒𝑡() and proceed the next episode if any. 

3. End of Episode and Convergence check  

4. Evaluate policy performance and adjust parameters if necessary.  

5. Check convergence for both Θ𝑑 and Θ𝑎 over episodes and extract final policies if convergence criteria 

are met: 𝜋𝑑
∗ ← 𝑄𝑑(𝑠, 𝑎; Θ𝑑)𝑎∈𝐴𝑑

arg 𝑚𝑎𝑥
;𝜋𝑎

∗ ← 𝑄𝑎(𝑠, 𝑎; Θ𝑎)𝑎∈𝐴𝑎

arg 𝑚𝑎𝑥
// This represents the optimal policies for 

deciding suitable action by both defender and attacker agents, respectively.  

End 

 

The Algorithm 1 presents the implementation steps for a proposed multi-agent model utilizing the 

dueling DQN architecture to establish a robust IDS in NGNs. The algorithm takes as input a standardized 

dataset with features 𝑋 and label 𝑌. It also requires the initialization of various other parameters such as random 

weights Θ𝑑 and Θ𝑎 for the defender and attacker dueling DQN models, respectively, as well as the discount 

factors 𝛾𝑎 and 𝛾𝑎, and the initial exploration rates 𝜀𝑑 and 𝜀𝑎. The entire computing steps are structured to train 

agent models in episodes and timesteps within an adversarial learning step, where at each step, actions are 

chosen based on an ε-greedy policy that balances exploration with exploitation. The actions taken by both the 

defender and attacker agents lead to new state observations and rewards, which are then used to update the 

agents' strategies through a process of RL. The transitions observed at each timestep are stored in replay buffers, 

from which minibatches are sampled to update the dueling DQN models. These updates are made by computing 
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the largest Q-values for the subsequent state, using temporal difference targets, and performing gradient 

descent to minimize expected loss, thereby refining the decision-making policies. A key aspect of the algorithm 

is the update of target networks, which occurs every 𝑇 timesteps to stabilize the Q-value predictions. This step 

uses a soft update rule to blend the current network parameters with those of the target networks, preventing 

the rapid propagation of errors through the Q-value estimations. The exploration rates are also adjusted over 

time to reduce the likelihood of random actions as the models become more capable, thus focusing on 

exploiting the learned policies. The final steps of the algorithm accounts for terminal states within the 

environment, which signify the end of an episode and a reset of environment to begin anew state𝑠𝑡+1. However, 

when the condition 𝑠𝑡+1 a terminal state is not met, the agent simply proceeds to the next timestep within the 

current episode. This is the typical loop within an episode of training, where the agent continually interacts 

with the environment until it reaches a terminal state or the maximum number of allowed timesteps. This 

iterative process ensures continuous learning and adaptation of the agents to the dynamics of the network 

traffic, exploring the complex interactions and decision-making processes necessary for maintaining network 

integrity and security. Figure 3 illustrates the flowchart of process described in Algorithm 1, summarizing the 

systematic and iterative nature of training dueling DQN agents in an adversarial setting from initialization 

through to policy evaluation and convergence. 
 
 

 
 

Figure 3. Operational Flowchart for dueling DQN-based adversarial learning in IDS 
 

 

3. RESULTS AND DISCUSSION 

The proposed dueling DQN-based defender and attacker agents were designed and developed using 

the Python programming language within the Anaconda environment. The experiments were conducted on a 

Windows 11 64-bit operating system with an NVIDIA GTX 1650 GPU. The dueling DQN agents employ a 

DL architecture to estimate the action-value function. The defender agent consists of one input layer, three 

hidden layers, each with 128 neurons, and an output layer with 5 neurons representing intrusion detection 

actions. In contrast, the attacker agent is configured with one input layer and 2 hidden layers, each containing 

128 neurons, and an output layer with 23 neurons representing various attack strategies. The discount factor 

for future reward for both attacker 𝛾𝑎 and defender 𝛾𝑑 is initialized to 0.001 and 𝜀 initial exploration for both 

the agent 𝜀𝑑 and 𝜀𝑎 is set to 0.9. The training of both agents is conducted over 200 episodes, with each episode 

consisting of 100 iterations (timesteps). The performance of the proposed IDS is evaluated based on reward 

and loss rates throughout episodes, as well as accuracy and F1-score metrics. 
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Figure 4 illustrates the cumulative rewards for both defense and attack agents across 200 episodes. 

Based on the careful observation of graph trends it can be analyzed that the defense reward rapidly increases 

and stablizes early in the training process. This suggests that the defender agent quickly learns effective 

strategies for detecting intrusions, indicating a robust defense strategy over time. While, the attacker agent's 

reward shows an initial increase but then it decrease at a lower rewards value throughout the remaining 

episodes. The defender's higher cumulative reward throughout the majority of the episodes suggests that the 

defense strategies being learned and employed are effectively mitigating the attack strategies. This analysis 

shows that the effectiveness of the dueling DQN algorithm in training the defender agent to adapt and respond 

to evolving threats in a dynamic adversarial environment. 
 

 

 
 

Figure 4. Cumulative reward Vs episodes 
 

 

Figure 5 presents the loss trends of the defender and attack agents over 200 training episodes. It can 

be observed the loss curve for both the agents during training shows a sharp decline in the initial episodes, 

indicating rapid learning and improvement in the performance of both agents. As the episodes progress, both 

loss measures exhibit a convergence towards a minimal value, with slight fluctuations that reflects the process 

of ongoing learning and adaptation of the agents to each other's strategies. It can be also seen that the loss curve 

for defender stabilizes quickly indicating defender agent's ability to reliably predict and counteract attack 

strategy.  
 

 

 
 

Figure 5. Training loss over episodes 
 

 

Figure 6 depicts a heat map representing the intensity of different types of network attacks as well as 

normal traffic over the 200 training episodes. For instance, the brighter yellow squares in the 'DoS' and 'R2L' 

columns suggest a higher intensity of these attacks at certain epochs, such as the 20th and 120th for 'DoS' and 

the 80th and 160th for 'R2L'. As observed that the consistently darker shades in the U2R column suggest that 

this type of attack occurs less frequently across all epochs. This heat map indicates a dynamic interplay between 

the defense mechanisms of the IDS and the attack strategies employed by the adversarial learning step. 

Figure 7 presents a statistical analysis of the proposed IDS, showcasing its effectiveness in accurately 

identifying instances across various classes. For normal traffic, the proposed IDS successfully classified 8,531 

out of 9,712 instances. This indicates a substantial robustness of the proposed system in distinguishing benign 

activities from malicious ones. In the context of DoS attacks, the IDS correctly identified 6,647 out of 7,458 

instances. However, the system also recorded 409 false negatives and 400 false positives in this category. The 

probe attack with a total of 2,421 data samples, the proposed IDS system correctly identified 2,146 as probe 

and for R2L attacks the IDS correctly classified 2,450 out of 2,753 data samples. The U2R attack class, being 

the least frequent with only 200 instances, and 148 correctly identified by the IDS and 25 false negatives and 

27 false positives are particularly concerning given the lower sample size. Despite the challenge of class 

imbalance, the proposed IDS is robust in its detection capabilities. 
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Figure 6. Intensity of attacks over epoch 

 

 

 
 

Figure 7. Illustrates statistical outcome of the proposed IDS system 

 

 

In the comparative analysis presented in Table 3, the proposed IDS showcases a significant 

advancement over existing methods. The proposed system achieves a high accuracy of 95.02% and an F1-score 

of 94.68%, indicating not only its capability to correctly classify intrusions but also to maintain a balance 

between precision and recall. The existing DQN RL approach [30] lacks adaptive learning, which is a critical 

shortfall in the context of evolving cyber threats, resulting in lower accuracy and F1-score. The existing scheme 

adaptive education (AE)-RL [32], despite incorporating adaptive learning, does not achieve the high 

performance metrics of the proposed system, potentially due to its simplified simulation of adversarial 

interactions which may not adequately represent the complex dynamics of intrusions to learn by an defense 

agent leading to fail in capturing intrusion in unseen data. The AESMOTE [33] approach, while addressing 

class imbalance and including adaptive learning, still falls short of the proposed system's performance. This 

could be due to the limitations in its environmental modeling particularly the data sampling approach that 

balances attack classes through artificial data generation in training instances.  

 

 

Table 3. Comparative analysis 
Existing approaches Adaptive learning Multi-agent approach Accuracy F1-Score 

DQN RL [30] No No 0.7807 0.8141 

AE-RL [32] Yes Yes 80.16 79.40 

AESMOTE [33] Yes Yes 0.82 82.4 
Proposed (Dueling DQN) Yes Yes 0.9502 0.9468 
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The reason behind achieving better performance by the proposed system are multiple. The primary 

reason is the incorporation of advanced dueling DQN mechanisms, which allow for a refined estimation of 

state values and action advantages, significantly reducing the overestimation bias that is common in other 

models. Furthermore, the system's adaptability is enhanced through the use of a customized OpenAI Gym 

environment, which provides a realistic and dynamic platform for the agents to learn and evolve. The multi-

agent adversarial learning framework further ensures that the IDS is continuously tested against an actively 

adapting adversary, where attackers are constantly developing new strategies. 

 

 

4. CONCLUSION 

This paper has introduced an novel IDS employing a RL algorithm dueling DQN within a multi-agent 

adversarial framework. The proposed system has demonstrated superior performance in detecting network 

intrusions suitable for NGNs, as evidenced by the comparative analysis which benchmarks the system against 

current state-of-the-art methods. The integration of adaptive learning has proven to be significant that allows 

the system to evolve and become dynamic to the ever-changing tactics employed by cyber adversaries. Another 

unique contribution is the utilization of a customized OpenAI Gym environment, which simulates realistic 

network traffic behaviors, providing a robust platform for our agents to learn and make decisions. The dynamic 

nature of the multi-agent adversarial learning setup ensures that the defender agent is not only equipped to deal 

with current threat patterns but is also continually refining its strategies to respond to emerging threats. Future 

work will focus on refining the system’s learning algorithms, exploring the integration of other AI techniques, 

and expanding the system’s applicability to diverse network problem such as routing, security and bandwidth 

optimization. 
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