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 The increasing use of resource-constrained devices such as the internet of 

things (IoT) in various applications has led to the need for an optimized 

blockchain framework for these devices. Blockchain-based IoT networks 

allow businesses to access and share IoT data within their organization 

without centralized authority. However, existing frameworks are not 

designed for IoT applications and lack features like decentralization, 

scalability, and network overhead. To overcome these limitations, a new 

blockchain framework is proposed: ledger on internet of things (LIoT), 

which has a new consensus-based leader election algorithm to address the 

challenges of existing algorithms with high block creation time and 

communication overhead. Moreover, a novel data structure has been 

developed to reduce the storage size of the ledger effectively. The proposed 

framework also employs a docker for deployment, which provides an 

efficient and easy setup of blockchain nodes without requiring the individual 

configuration of each machine, increases the efficiency of the consensus 

process, and enables convenient deployment and management of the 

blockchain framework on resource-constrained devices. Furthermore, the 

performance of the proposed consensus method is analyzed using various 

performance parameters, including CPU usage, memory usage, transaction 

execution time, and block generation time. 
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1. INTRODUCTION 

Blockchain technology [1], [2] is built upon the foundation of distributed ledger technology (DLT), 

which serves as a decentralized database for sharing transaction information. This system chronologically 

adds operations to the DLT and stores them as blocks within the ledger. Each block in a blockchain refers to 

the block that precedes it, creating an interconnected chain. In this context, transactions are stored in blocks 

within the ledger. To ensure data integrity, these blocks are replicated to prevent loss during transmission 

errors. Additionally, the data within each block is encrypted using private keys, making it inaccessible to 

unauthorized nodes. These replicated and encrypted blocks are then distributed among decentralized nodes 

across the globe. 

Blockchain technology has the potential to create immense value across various industries. 

According to a report by the World Economic Forum, it is estimated to generate 1.5 trillion in new value by 

2030. With its ability to provide greater transparency and security in financial transactions, improve supply 

chain management, and increase efficiency in numerous industries [3]–[6], blockchain technology is on the 

https://creativecommons.org/licenses/by-sa/4.0/


Int J Artif Intell  ISSN: 2252-8938  

 

Ledger on internet of things: a blockchain framework for resource-constrained … (Suresh Jaganathan) 

2507 

rise. However, as blockchain technology continues to evolve, so do the challenges and limitations of existing 

algorithms used to ensure the security and reliability of the blockchain network [7]. Also, the blockchain's 

data structure exhibits characteristics similar to a linked list, resulting in linear growth and increased space 

complexity. Furthermore, existing consensus algorithms and leader election processes often impose higher 

time and communication overhead [8], [9]. 

To address these challenges, this article proposes a new consensus-based leader election algorithm 

that guarantees consensus attainment while simultaneously reducing the number of messages exchanged. 

Moreover, a novel data structure designed explicitly for ledger storage to enhance overall efficiency has also 

been designed. In terms of deployment, the entire framework is embedded within docker containers.  

Docker's containerization technology [10] streamlines the setup process, eliminating the need for individual 

machine configurations. By leveraging docker, the deployment of the blockchain framework becomes more 

efficient and convenient, facilitating rapid setup without compromising configuration requirements. 

By improving the efficiency and reliability of the blockchain network, this proposed framework has 

the potential to contribute significantly to the widespread adoption and success of blockchain technology.  

A more secure, efficient, and reliable blockchain network could positively impact various industries, create 

new opportunities for businesses and individuals, and drive innovation [11], [12]. Moreover, the proposed 

novel data structure is designed to optimize the search functionality, enabling faster and more efficient 

querying of transactions. By departing from the conventional linked list data structure, the proposed solution 

offers a more streamlined and effective data storage and retrieval approach, ensuring improved performance 

and responsiveness. A peer-to-peer network is constructed to facilitate seamless data sharing and 

communication, enabling nodes across different branches to exchange the stored data. As each node 

possesses a copy of the ledger, data backups are consistently maintained, ensuring data availability and 

reliability even when specific nodes experience downtime within the peer-to-peer network. 

The primary objective of this work is to design a new blockchain framework incorporating a novel 

consensus method that significantly reduces communication overhead. Introducing a new consensus 

mechanism tailored to the application's specific requirements can improve transaction execution efficiency 

and overall system performance. The rest of the paper is organized as follows: section 2 focusses on recent 

works on blockchain architectures and internet of things (IoT). The proposed work Ledger on internet of 

things (LIoT) is detailed in section 3. The experimental results and analyses can be found in section 4. 

Finally, section 5 concludes the paper with possible future work. 

 

 

2. RELATED WORK 

This section overviews existing blockchain architectures, functionalities, applications, and 

limitations. It also summarizes the key findings from these systems. According to Bandara et al. [13], a new 

blockchain architecture called Tikiri is proposed. Tikiri is designed to be scalable, lightweight and optimized 

for the unique demands of IoT devices. Unlike traditional monolithic blockchains, Tikiri is implemented as a 

collection of distributed microservices. The architecture consists of four primary services: gateway service, 

Lokka service, storage service, and Kafka message broker. These services work together to ensure efficient 

transaction processing and high security. Tikiri offers high scalability, concurrent transaction execution, and 

fast search capabilities using a distributed database.  

Bandara et al. [14] address the challenges of integrating blockchain with big data. They propose a 

blockchain storage system, Mystiko, based on the Apache Cassandra distributed database. Mystiko provides 

high transaction throughput, big data storage, and scalability, overcoming the limitations of traditional 

blockchains. The system consists of storage, chain, and miner services, which collectively handle 

transactions, verification, and block creation. 

Bandara et al. [15] present Rahasak, a new blockchain system that tackles storage, execution order, 

and smart contract structure issues. Rahasak utilizes a "validate, execute, group" blockchain architecture with 

Apache Kafka-based consensus for real-time transaction execution. It employs functional programming and 

actor-based smart contracts for concurrent transactions. Data replication is achieved through sharding and a 

microservice-based architecture, which enhances scalability. Rahasak also incorporates full-text search 

capabilities and handles high transaction throughput using Apache Kafka message broker and reactive stream 

methodology. 

In another research [16]–[19] a lightweight blockchain system called light chain is introduced for 

integration with the industrial internet of things (IIoT). Light chain focuses on resource efficiency and power-

constrained IIoT devices. It employs a green consensus mechanism called synergistic multiple proof (SMP), 

and a lightweight data structure called light block to reduce computational and storage requirements. Light 

chain offers improved performance, reduced storage needs, and secure communication for IIoT applications. 

Zamani et al. [20] propose rapid chain, a sharding-based blockchain protocol to address slow transaction 

processing and limited scalability. Rapid chain divides the network into smaller committees, allowing 
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parallel processing of transactions and improving throughput. Its sharding-based consensus algorithm can 

handle Byzantine faults and achieves high transaction throughput.  

Another studies [21]–[23] propose a decentralized blockchain-based architecture for mobile IoT 

systems. The framework attempts to ensure security, transparency, and efficiency while addressing the 

drawbacks of centralized architectures. It tackles data collection, analytics, and storage challenges in 

resource-constrained IoT devices. The sensor-chain framework offers a lightweight solution with reduced 

resource consumption while retaining vital information about IoT systems. It enables secure and scalable 

communication, unlocking the potential of blockchain technology for mobile IoT. 

The studies and experiments conducted on blockchain architectures such as Rahasak utilizing the 

Kafka consensus algorithm and Mystiko based on the Apache Cassandra distributed database have been 

observed to incur significant communication overhead. This can impact the overall performance and 

efficiency of the system, especially when handling a large number of transactions. Additionally, the linked 

list data structure used for data storage may not be optimal for efficient querying of transactions, potentially 

leading to slower search operations. 

 

 

3. METHOD 

3.1.  Ledger of internet of things 

LIoT is a blockchain framework comprising three essential layers: the network, blockchain, and 

application layers. The network layer establishes connectivity among multiple nodes through a peer-to-peer 

network architecture. Each node utilizes docker, a versatile platform for deploying, shipping, and running 

applications within isolated containers. These containers provide lightweight and portable environments that 

facilitate the efficient deployment of applications across the network. In the blockchain layer, LIoT 

implements a unique leader election algorithm. This algorithm selects a leader among the connected nodes, 

creates a new block, and propagates it to other nodes. The blockchain layer also incorporates a novel data 

structure to securely organize and store data, ensuring its integrity and tamper-proof nature. Figure 1 depicts 

the architecture of LIoT. 

 

 

 
 

Figure 1. Architecture of LIoT 

 

 

In the application layer of LIoT, a specific use case is implemented: the attendance ledger.  

The attendance ledger leverages the blockchain infrastructure provided by the lower layers to create a secure 

and decentralized system for tracking attendance records. With LIoT, the attendance ledger application 

benefits from the inherent features of blockchain technology, such as immutability, transparency, and 

decentralization. Each attendance record can be securely stored in a block within the blockchain, ensuring 

that the data remains tamper-proof and resistant to unauthorized modifications. 

Embedding LIoT in docker enhances the framework's portability. Docker allows LIoT to be 

encapsulated within a container, including all necessary dependencies and configurations. This 

containerization ensures that all the components and configurations required for running LIoT are bundled 

together, making it easy to deploy on different platforms and environments. With docker, developers can 
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create a docker image once and run it consistently across various systems, eliminating the need for manual 

setup and configuration. This streamlined deployment process improves portability and accelerates the 

deployment of LIoT applications. By leveraging docker's capabilities [24], including overlay networks, users 

can efficiently manage containers and enjoy several benefits. One significant advantage of docker is the 

seamless communication between containers, which significantly enhances the system's scalability. 

Containers can be easily scaled up or down to accommodate changing demands, enabling LIoT applications 

to handle increased workloads without disruptions. Another critical benefit is docker's built-in security 

mechanisms, ensuring container communication is secure and isolated. Containers are encapsulated within 

their environment, minimizing the risk of unauthorized access or interference. This heightened security is 

crucial for protecting sensitive data and maintaining the system's integrity. 

 

3.2.  Design of consensus-based leader election algorithm for ledger of internet of things 

The design of a consensus-based leader election algorithm for LIoT addresses the need for a reliable 

and decentralized process to select a leader node in a LIoT network. The leader node is crucial in various 

distributed applications, including the attendance ledger system discussed later. In a LIoT network, where 

resources and computing power are limited, it is essential to devise an efficient and lightweight algorithm for 

leader election. The consensus-based approach ensures that the selection process is fair, transparent, and 

resistant to manipulation or malicious attacks [25], [26]. The leader election process begins by generating 10 

random pandigital numbers with unique digits. These numbers are then evaluated against six specific 

conditions to determine if they meet certain requirements. The conditions are as follows: 

‒ Condition 1: check if the 2nd, 3rd, and 4th digits together is divisible by 2. 

‒ Condition 2: check if the 3rd, 4th, and 5th digits together is divisible by 3. 

‒ Condition 3: check if the 4th, 5th, and 6th digits together is divisible by 5. 

‒ Condition 4: check if the 5th, 6th, and 7th digits together is divisible by 7. 

‒ Condition 5: check if the 6th, 7th, and 8th digits together is divisible by 11. 

‒ Condition 6: check if the 7th, 8th, and 9th digits together is divisible by 13. 

Each condition represents a divisibility test that the generated numbers must satisfy. The algorithm 

iterates through the generated numbers and counts the number of conditions each number meets. The number 

that satisfies the highest conditions with the minimum number of iterations is elected as the leader. Once 

elected, the leader node takes responsibility for creating a new block in the blockchain. This consensus-based 

leader election algorithm ensures that the leader is selected relatively and that the subsequent block-creation 

process proceeds decentralized. Algorithm 1 details the steps involved in the leader election. 

 

Algorithm 1. Leader election 
Function leader election 

Pan_digital ←Empty list; 

Max_conditions_satisfied ← 0; 

primes ←[2, 3, 5, 7, 11, 13]; 

min_iterations ← ∞; 

pan_number ←None; 

for i in range(1, 11) do 

random_number ←generate_pandigital(); 

conditions_satisfied ← check conditions(random_number, primes); 

num_conditions_satisfied ← length(conditions_satisfied); 

if num_conditions_satisfied > max_conditions_satisfied then 

max_conditions_satisfied ← num_conditions_satisfied; 

pan_number ←random number; 

min_iterations ← i; 

end 

end 

if max_conditions_satisfied > 0 then 

output ← “PAN DIGITAL NUMBER” + pan_number + “ - Maximum Conditions Satisfied: ” + 

   max_conditions_satisfied + “ - Min Iterations: ” + min_iterations; 

pan_digital.append([self.id, pan_number, max_conditions_satisfied, min_iterations]); 

else 

print(“None of the generated numbers satisfied any condition.”); 

end 

return pan_digital 

 

3.3.  Skip list: a data structure for ledger of internet of things 

The need for a more efficient data structure arises due to the scale and complexity of managing data. 

As the number of data grows, traditional data structures like linked lists struggle to maintain optimal 

performance. The introduction of a novel data structure known as "skip list" efficiently stores and retrieves 

data in the blockchain [27], [28]. A skip list is initially a sorted linked list, which cannot be binary searched 

due to its nature. However, additional layers are added at the top of the bottom list. Each new layer includes 
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elements from the previous layer with a certain probability, often 1 2⁄ . These new layers maintain the 

ordering. Some elements are kept while others are discarded probabilistically, resulting in a skip list with 

multiple ordered layers. The skip list has three significant properties: height (h), which is the number of 

linked lists in it; the number of distinct elements (n); and probability (p), which is normally 1 2⁄ . The highest 

element appears in log1
p⁄
(n) lists on average. If p = 1

2⁄ , there are log2(n) lists on average. Every element 

in the skip list has four pointers: left, right, top, and bottom. These pointers enable efficient search operations 

in the skip list. 

The time complexity of operations in a skip list is typically Ο(log n), where n is the number of 

elements in the skip list. This complexity holds for insertion and search operations. These are expected or 

average-case bounds because skip lists use randomisation in their data structure. The worst-case bounds for 

the skip list are Ο(n), but these are less commonly analysed due to the probabilistic nature of the skip list. 

The space complexity of a skip list is Ο(n), where n is the number of elements in the skip list.  

This means that the space the skip list utilises grows linearly with the number of elements. To reason about 

the space complexity, let us consider the number of positions in the skip list. It can be represented by 

n∑
1

2i
h
i=0  which is equal to n (1 +

1

2
+

1

4
+

1

8
+⋯) = n × 2. Therefore, expected space utilisation is simply 

Ο(n). Algorithm 2 details the working of the insertion process in the skip list: 

 

Algorithm 2. Skip list insertion 
Function Insert(key): 

p ← Search(key); 

q ← null; 

i ← 0; 

h ← 0; 

n ←1; 

repeat 

i ← i + 1 ; // height of tower for new element 

if i ≥ h then; 

h ← h + 1; 

createNewLevel(); // creates a new linked list level 

end 

while p.above = null do 

p ← p.prev ; //scan backwards 

end 

p ← p.above; 

q ← insertAfter(key, p) ; // insert key after position p 

n ← n + 1; 

until (n == 10); 

return q 

 

Algorithm 3 details the steps for the searching process in a skip list, and this function inputs a search 

key (key). This function returns a position (p), where the value at this position is the largest that is less than 

or equal to the key. The function performs a downward scan in the skip list and then scans forward to find the 

appropriate position. 

 

Algorithm 3. Skip list search 
Function Search(key): 

p ← top-left node; 

while p.below ≠ null do 

p ← p.below  

while key ≥ p.next do 

p ← p.next 

end 

end 

return p 

 

The skip list is initialized with parameters such as the maximum level and the probability for 

determining the level of each node. These parameters are set during the initialization process and govern the 

structure and behavior of the skip list. The skip list starts with a header node, which serves as the starting 

point for traversal and provides a reference to the first node at each level. Each node in the skip list contains 

two main components: the data itself and a list of forward pointers. The forward pointers enable efficient 

navigation through the skip list, allowing faster search and insertion operations. During the insertion process, 

the level of each node is determined randomly based on the given probability parameter. This probabilistic 
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approach allows for a balanced distribution of nodes across different levels, promoting efficient search and 

traversal. Higher-level nodes act as shortcuts, allowing faster movement through the skip list. 

 

 

4. EXPERIMENTS AND RESULT ANALYSIS 

A mesh network is a decentralized architecture where multiple devices establish direct peer-to-peer 

connections. Implementing a mesh network allows two or more devices to connect and exchange messages 

directly, eliminating the reliance on a centralized server. The devices can establish direct communication 

channels by assuming dual roles as clients and servers. To set up a mesh network, the code initializes the 

network by specifying the IP addresses of the devices involved. These IP addresses are typically stored in a 

configuration file. Each device is represented by a node object, created with its respective IP address and a 

designated port number. The network is then initiated by starting each node, allowing time for the 

connections to be established. The devices within the mesh network establish connections by connecting to 

the IP addresses listed in the network configuration. Delays are introduced between connection attempts to 

ensure proper connection establishment as shown in Figure 2. 

The implementation of docker container communication involves utilizing docker's overlay network 

feature. Overlay networks in docker enable seamless communication between containers running on different 

hosts, providing a virtual network that allows secure interaction regardless of the container's physical 

locations. Four steps are needed to establish docker container communication: i) create an overlay network, 

ii) deploy docker containers, iii) connect containers to the overlay network, and iv) utilize container DNS 

resolution. 

 

 

 
 

Figure 2. Implementation of IoT 

 

 

4.1.  Embedding ledger of internet of things in docker 

A vital step in embedding a LIoT in docker is creating a text file, "dockerfile", which contains 

instructions for building the docker image. Within the dockerfile, the base image is defined, necessary 

dependencies are installed, and the LIoT is configured to ensure its proper functioning within the docker 

environment. Once the dockerfile is ready, the next step involves building the docker image using the docker 

build command sudo docker build -t myimage. During this process, a tag is specified to identify the image 

uniquely. Docker compiles the container based on the instructions provided in the dockerfile, resulting in a 

complete docker image of the LIoT. With the docker image successfully built, the LIoT can run by creating 

containers from the image using the docker run command. By executing this command, instances of the LIoT 
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are started within separate containers. This allows for isolated execution and management of the LIoT, 

ensuring its availability and functionality. 

 

4.2.  Leader election algorithm for ledger of internet of things 

The algorithm employs the concept of pandigital numbers, which are numbers that contain all digits 

from 0 to 9 without repetition. By generating 10 random pandigital numbers, each node participating in the 

election has an equal chance of becoming the leader. The conditions imposed on these pandigital numbers 

ensure the elected leader can satisfy specific divisibility tests. These tests help maintain the integrity and 

security of the leader election process. By meeting more conditions, a number demonstrates its capability to 

serve as a reliable leader. Once elected, the leader node takes responsibility for creating a new block in the 

blockchain. This block contains both a header and a body. The block's header includes the ID and the 

timestamp indicating the exact time the block was created, as well as the current, previous, and data hash. 

This information is vital for tracking and verifying the block's authenticity within the blockchain. The body 

section of the block contains a collection of data entries or transactions being added to the blockchain. These 

data entries are represented by a list of image hashes obtained by iterating over the files in the specified 

folder path and calculating the SHA256 hash for each image file. 

After the block is created, it is appended to the genesis block, which serves as the initial block in the 

blockchain. The genesis block contains the fundamental information that establishes the foundation of the 

blockchain. Then, the leader node propagates it to other connected nodes in the network, as shown in  

Figure 3. These nodes play a crucial role in validating the received block. They verify the block's integrity by 

calculating its hash and comparing it with the provided current hash. If the calculated hash matches the 

current hash, it indicates that the block has not been tampered with during transmission. Upon successful 

validation, the nodes append the received block to their local copy of the blockchain. 

 

 

 
 

Figure 3. Block creation and forwarding 

 

 

4.3.  Data structure for ledger of internet of things 

The LIoT utilised "skip list" as its underlying data structure. The skip list is a probabilistic data 

structure that provides an alternative to a traditional linked list with improved search and insertion times.  

It allows for fast and efficient traversal of elements, making it suitable for managing large amounts of data. 

The skip list data structure consists of multiple levels, each representing a subset of the elements in the list. 

Each level contains a linked list of nodes, where each node stores a value and a set of forward pointers. The 

forward pointers allow quick navigation through the levels, effectively skipping over elements and reducing 

the number of comparisons required during search operations. The "ledger.json" file data is inserted into the 

skip list, which organizes and indexes the blockchain data for easy retrieval and manipulation. Additionally, 

the primary function performs search operations on the skip list, allowing for efficient querying based on 

given criteria or conditions. 

LIoT optimizes the blockchain's storage, retrieval, and search operations by utilizing the skip list 

data structure. The skip list's efficient traversal and balanced structure make it well-suited for managing large 

amounts of data while maintaining fast access times and preserving the integrity of the blockchain. Compared 
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to a traditional linked list, skip list offers several advantages. First, skip list provides a logarithmic search 

time complexity, meaning that searching for an element increases slowly as the number of elements grows. In 

contrast, a linked list has a linear search time complexity, resulting in slower search operations for larger data 

sets. Secondly, when inserting a new element, the skip list dynamically adjusts its structure to maintain the 

desired balance, ensuring optimal search time. In linked lists, insertions require modifications to the 

neighboring nodes, potentially leading to slower performance for frequent updates. 

Additionally, skip list is self-balancing, meaning it maintains a relatively even distribution of 

elements across the levels. This self-balancing property ensures that the performance of the skip list remains 

consistent over time, regardless of the order in which elements are inserted. The skip list consistently 

outperforms the linked list in terms of time taken for various numbers of records. This performance 

improvement is particularly significant as the number of records increases. The skip list's logarithmic search 

and insertion complexity allow it to scale more efficiently, making it a suitable choice for managing the 

attendance ledger in LIoT. 

 

4.4.  Results analysis and discussion 

4.4.1. CPU usage 

CPU usage statistics are obtained using the command docker stats, which provides real-time 

resource usage statistics. Figure 4 shows the recorded CPU consumption for LIoT and Tikiri as a share of the 

overall CPU. These measurements were taken during the testing phase of the lightweight implementation of 

LIoT. The primary reason for the lower CPU usage in LIoT can be attributed to its light blockchain 

architecture, which incorporates the pan digital leader election consensus mechanism. 

 

 

 
 

Figure 4. CPU usage 

 

 

Tikiri has higher CPU usage than LIoT because of the communication between the Lokka service 

and the Kafka message broker. The interaction between these components introduces additional 

computational overhead, increasing CPU utilization. When Tikiri communicates with the Lokka service,  

it must send and receive messages through the Kafka message broker. This communication involves various 

operations, including message encoding, decoding, routing, and network transmission. These tasks require 

CPU resources to handle the data transformation and transmission processes. 

The Kafka message broker also requires computational resources to manage the messaging 

infrastructure. It handles message storage, replication, and distribution across multiple nodes, which can 

significantly load the CPU. On the other hand, LIoT's lightweight blockchain architecture, combined with the 

pan digital leader election, allows for optimized resource usage and reduced CPU overhead. The leader 

election process in LIoT is designed to minimize computational requirements while maintaining efficient 

consensus within the network. 

 

4.4.2. Memory usage 

Memory usage can be recorded periodically to evaluate the resource utilization and efficiency of the 

blockchain framework. In Figure 5, the comparison of memory usage between LIoT and Tikiri is illustrated, 

clearly demonstrating LIoT's lower memory usage in contrast to Tikiri. LIoT adopts a minimalist approach by 

utilizing minimal services. Only essential services are employed, resulting in a reduced memory footprint. 
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LIoT optimizes memory usage and allocates resources more efficiently by avoiding unnecessary or redundant 

services. Additionally, LIoT maintains the ledger in a JSON format, a lightweight data-interchange format that 

is easy to parse and consumes less memory than other formats such as XML. LIoT minimizes the memory 

requirements for storing and processing the ledger information by storing the ledger data in JSON format. 

On the other hand, Tikiri runs multiple microservices, including gateway, Lokka, storage, and 

Kafka. Each microservice contributes to the system's overall memory usage. The gateway handles the 

communication between external entities and the Tikiri network, while the Lokka service facilitates the 

interaction with the Kafka message broker. The Storage service manages the data storage and retrieval, and 

Kafka acts as a message broker for exchanging data between different components. Running multiple 

microservices simultaneously increases the memory overhead. Each service requires memory allocation for 

executing tasks and storing data, resulting in higher memory usage than LIoT's minimalist approach. 
 

 

 
 

Figure 5. Memory usage comparison: LIoT vs Tikiri 
 

 

4.4.3. Transaction and block generation time 

In this evaluation, the comparison of transaction execution time between LIoT and Tikiri is 

conducted, as shown in Figure 6. Transaction execution time is when a transaction is added to a block from 

the data pool until all nodes have confirmed it. LIoT takes less time than Tikiri. There are several factors 

contributing to this difference. One of the critical factors is the efficiency of the consensus mechanism 

employed by LIoT in electing the leader and generating blocks that contain the transactions. LIoT utilizes a 

consensus algorithm that enables a faster consensus among the participating nodes in the network. 

Data hash generation time, block hash generation time, the time necessary for transaction validation 

by the leader node, and block broadcast time between peers contribute to block generation time. In Figure 7, 

the block generation time is compared with the number of transactions in the block for LIoT and Tikiri.  

It is evident that as the number of transactions increases, the block generation time also increases. 
 

 

  
 

Figure 6. Transaction execution time with different 

transaction sets: LIoT vs Tikiri 

 

Figure 7. Comparison of block generation time:  

LIoT vs Tikiri 
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However, when comparing LIoT with Tikiri, it can be observed that LIoT demonstrates better block 

generation time. This can be attributed to the two blockchain's architectural differences and design choices. 

In Tikiri, block generation involves communication with the Kafka service to obtain transactions.  

This communication adds additional overhead and latency to the block generation time. On the other hand, 

LIoT stores transactions directly in the node's data pool, eliminating the need for external communication. 

This streamlined approach reduces the block generation time in LIoT. 

 

4.4.4. Comparison of data structures (linked list vs skip list) 

The comparison between the linked list and skip list data structures reveals the need for more 

efficient data structures such as skip list when handling large-scale and complex data. As the volume of data 

grows, traditional structures like the linked list face challenges in maintaining optimal performance.  

To address these limitations, the skip list data structure has emerged as a viable solution for storing and 

retrieving data in blockchain systems, such as LIoT. 

Compared to the linear search time complexity of the linked list, the skip list provides a logarithmic 

search time complexity. As the number of elements grows, the time to search for a specific element increases 

slowly. Consequently, skip list significantly outperforms the linked list in search operations, particularly for 

larger datasets. Regarding insertion operations, the skip list dynamically adjusts its structure to maintain 

balance and optimize search times. In contrast, linked lists require modifications to neighboring nodes during 

insertions, potentially resulting in slower performance for frequent updates.  

Furthermore, the self-balancing nature of skip list ensures a relatively even distribution of elements 

across the levels. This property guarantees consistent performance over time. Such consistency and 

scalability make skip list a preferred choice for managing the attendance ledger in LIoT. 

In Table 1, the comparison table depicts the performance of the skip list and linked list based on the 

manipulated number of records. In Figure 8, the chart illustrates the time taken (in milliseconds) for different 

numbers of records. The skip list is represented by the blue bars, while the linked list is by the red bars. The 

x-axis represents the number of records, and the y-axis represents the time taken. This comparison chart 

visually represents the efficiency and performance advantages of the skip list over the linked list. 

 

 

Table 1. Query transaction results 
Number of records Skip list (ms) Linked list (ms) 

42 0.5 4.2 
84 0.6 6.2 

168 0.7 14.5 

250 0.8 16.9 
250 0.9 17.3 

500 1.3 18.6 

750 1.5 19.8 
1000 2.7 20.3 

 

 

 
 

Figure 8. Comparison of query transaction 
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4.4.5. Performance of LIoT with different scenarios (low, medium, and high transactions) 

LIoT demonstrates robust performance across different transaction scenarios: low, medium, and 

high. Implementing the skip list data structure further enhances LIoT's efficiency and scalability.  

In low transaction scenarios, with a relatively minor number of transactions, LIoT achieves remarkable 

response times. For instance, when handling 42 transactions, LIoT exhibits a negligible latency of 0.5 

milliseconds. As the transaction volume increases to the medium range, such as 250 transactions, LIoT 

maintains excellent performance with a minimal latency of 0.8 milliseconds. Even in high transaction 

scenarios, where the workload intensifies, LIoT delivers impressive results. With 1000 transactions, LIoT 

handles the increased load efficiently, with a low latency of 2.7 milliseconds. Figure 9 highlights the 

effectiveness of the skip list data structure in enabling LIoT to process transactions swiftly and reliably across 

different workload scenarios. 

 

 

 
 

Figure 9. Performance of LIoT with different scenarios (low, medium and high transactions) 

 

 

5. CONCLUSION 

The proposed LIoT framework is designed to deploy dApps (a kind of application which uses 

blockchain technology) in IoT devices, and its primary objective is to establish a highly secure and 

decentralized network infrastructure. By enabling direct communication and data exchange between nodes 

without relying on a centralized authority, this approach significantly enhances the overall security and 

resilience of the blockchain framework. Another critical aspect of the LIoT framework is the customized 

consensus algorithm explicitly tailored for the LIoT framework. The Pan Digital Leader Election algorithm 

ensures a fair and decentralized leader selection process within the LIoT framework, enabling the efficient 

and secure creation of blocks in the blockchain. Furthermore, the LIoT framework incorporates the Skip List 

data structure, revolutionizing the storage and retrieval of transactions and ledger information. The Skip List 

offers superior search compared to a traditional data structure like a linked list. With its multi-level structure 

and forward pointers, the Skip List enables efficient traversal and navigation through the blockchain, 

significantly enhancing the performance of the LIoT framework. Pan Digital leader election algorithm 

combined with the Skip List data structure revolutionizes the storage, retrieval, and consensus aspects of the 

LIoT framework, paving the way for scalable and reliable blockchain solutions in resource-constrained 

environments. Embedding LIoT in docker enhances portability by encapsulating it within a container, 

including dependencies. Docker facilitates seamless container communication, fostering efficient 

collaboration and streamlined deployment in diverse environments. In addition to the features mentioned 

above, future work for the LIoT framework includes the integration of proof-of-work and smart contract 

concepts. 
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