Automated tumor segmentation in MR brain image using fuzzy c-means clustering and seeded region methodology

Mustafa Zuhaer Nayef AL-Dabagh

Abstract


Automated segmentation of a tumor is still a considerably exciting research topic in the medical imaging processing field, and it plays a considerable role in forming a right diagnosis, to aid effective medical treatment. In this work, a fully automated system for segmentation of the brain tumor in MRI images is introduced. The suggested system consists of three parts: Initially, the image is pre-processed to enhance contrast, eliminate noise, and strip the skull from the image using filtering and morphological operations. Secondly, segmentation of the image happens using two techniques, fuzzy c-means clustering (FCM) and with the application of a seeded region growing algorithm (SGR). Thirdly, this method proposes a post-processing step to smooth segmentation region edges using morphological operations. The testing of the proposed system involved 233 patients, which included 287 MRI images. A comparison of the results ensued, with the manual verification of the traces performed by doctors, which ultimately proved an average Dice Coefficient of 90.13% and an average Jaccard Coefficient of 82.60% also, by comparison with traditional segmentation techniques such as FCM method. The segmentation results and quantitative data analysis demonstrates the effectiveness of the suggested system.

Keywords


Brain tumor, Magnetic resonance imaging fuzzy c-means clustering, Morphological operations, Seeds region growing

Full Text:

PDF


DOI: http://doi.org/10.11591/ijai.v10.i2.pp%25p

Refbacks

  • There are currently no refbacks.


View IJAI Stats

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.