Speech recognition of moroccan dialect using hidden markov models

Bezoui Mouaz, Beni-hssane Abderrahim, Elmoutaouakkil Abdelmajid


This paper addresses the development of an Automatic Speech Recognition (ASR) system for the Moroccan Dialect. Dialectal Arabic (DA) refers to the day-to-day vernaculars spoken in the Arab world. In fact, Moroccan Dialect is very different from the Modern Standard Arabic (MSA) because it is highly influenced by the French Language. It is observed throughout all Arab countries that standard Arabic widely written and used for official speech, news papers, public administration and school but not used in everyday conversation and dialect is widely spoken in everyday life but almost never written. we propose to use the Mel Frequency Cepstral Coefficient (MFCC) features to specify the best speaker identification system. The extracted speech features are quantized to a number of centroids using vector quantization algorithm. These centroids constitute the codebook of that speaker. MFCC’s are calculated in training phase and again in testing phase. Speakers uttered same words once in a training session and once in a testing session later. The Euclidean distance between the MFCC’s of each speaker in training phase to the centroids of individual speaker in testing phase is measured and the speaker is identified according to the minimum Euclidean distance. The code is developed in the MATLAB environment and performs the identification satisfactorily.



Full Text:


DOI: http://doi.org/10.11591/ijai.v8.i1.pp7-13


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN/e-ISSN 2089-4872/2252-8938 
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

View IJAI Stats