Rule Based and Expectation Maximization algorithm for Arabic-English Hybrid Machine Translation

Arwa Hatem Alqudsi, Nazlia Omar, Rabha W. Ibrahim


It is practically impossible for pure machine translation approach to process all of translation problems; however, Rule Based Machine Translation and Statistical Machine translation (RBMT and SMT) use different architectures for performing translation task. Lexical analyser and syntactic analyser are solved by Rule Based and some amount of ambiguity is left to be solved by Expectation–Maximization (EM) algorithm, which is an iterative statistic algorithm for finding maximum likelihood. In this paper we have proposed an integrated Hybrid Machine Translation (HMT) system. The goal is to combine the best properties of each approach. Initially, Arabic text is keyed into RBMT; then the output will be edited by EM algorithm to generate the final translation of English text. As we have seen in previous works, the performance and enhancement of EM algorithm, the key of EM algorithm performance is the ability to accurately transform a frequency from one language to another. Results showing that, as proved by BLEU system, the proposed method can substantially outperform standard Rule Based approach and EM algorithm in terms of frequency and accuracy. The results of this study have been showed that the score of HMT system is higher than SMT system in all cases. When combining two approaches, HMT outperformed SMT in Bleu score.


Arabic-English Machine, Translation, Expectation–Maximization (EM) Algorithm, Hybrid Machine Translation, Machine Translation

Full Text:




  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN/e-ISSN 2089-4872/2252-8938 
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

View IJAI Stats