Region of interest-based image retrieval techniques: a review

Mardhiyah Md Jan, Nasharuddin Zainal, Shahrizan Jamaludin


This paper presents a review of the region of interest-based (ROI) image retrieval techniques. In this study, the techniques, the performance evaluation parameters, and databases used in image retrieval process are being reviewed. A part of an image that is considered important or a selected certain area of the image is what defines a region of interest. Retrieval performance in large databases can be improved with the application of content-based image retrieval systems which deals with the extraction of global and region features of images. The capability of reflecting users' specific interests with greater accuracy has shown to be more effective when using region-based features compared to global features. Segmentation, feature extraction, indexing, and retrieval of an image are the tasks required in retrieving images that contain similar regions as specified in a query. The idea of the region of interest-based image retrieval concepts is presented in this paper and it is expected to accommodate researchers that are working in the region-based image retrieval system field. This paper reviews the work of image retrieval researchers in the span of twenty years. The main goal of this paper is to provide a comprehensive reference source for scholars involved in image retrieval based on ROI.


Image processing, Image retrieval system, Region of interest (ROI), Region-based image retrieval (RBIR)

Full Text:




  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN/e-ISSN 2089-4872/2252-8938 
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

View IJAI Stats