Pedestrian detection using Doppler radar and LSTM neural network

Mussyazwann Azizi Mustafa Azizi, Mohammad Nazrin Mohd Noh, Idnin Pasya, Ahmad Ihsan Mohd Yassin, Megat Syahirul Amin Megat Ali


Integration of radar systems as primary sensor with deep learning algorithms in driver assist systems is still limited. Its implementation would greatly help in continuous monitoring of visual blind spots from incoming pedestrians. Hence, this study proposes a single-input single-output based Doppler radar and long short-term memory (LSTM) neural network for pedestrian detection. The radar is placed in monostatic configuration at an angle of 45 degree from line of sight. Continuous wave with frequency of 1.9 GHz are continuously transmitted from the antenna. The returning signal from the approaching subjects is characterized by the branching peaks higher than the transmitted frequency. A total of 1108 spectrum traces with Doppler shifts characteristics is acquired from eight volunteers. Another 1108 spectrum traces without Doppler shifts are used for control purposes. The traces are then fed to LSTM neural network for training, validation and testing. Generally, the proposed method was able to detect pedestrian with 88.9% accuracy for training and 87.3% accuracy for testing.


Doppler, LSTM, Neural network, Pedestrian, Radar

Full Text:




  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN/e-ISSN 2089-4872/2252-8938 
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

View IJAI Stats