Long-term load forecasting using grey wolf optimizer -least-squares support vector machine

Z. M. Yasin, N. A. Salim, N.F.A. Aziz, Y.M. Ali, H. Mohamad


Long term load forecasting data is important for grid expansion and power system operation. Besides, it also important to ensure the generation capacity meet electricity demand at all times. In this paper, Least-Square Support Vector Machine (LSSVM) is used to predict the long-term load demand. Four inputs are considered which are peak load demand, ambient temperature, humidity and wind speed. Total load demand is set as the output of prediction in LSSVM. In order to improve the accuracy of the LSSVM, Grey Wolf Optimizer (GWO) is hybridized to obtain the optimal parameters of LSSVM namely GWO-LSSVM. Mean Absolute Percentage Error (MAPE) is used as the quantify measurement of the prediction model. The objective of the optimization is to minimize the value of MAPE. The performance of GWO-LSSVM is compared with other methods such as LSSVM and Ant Lion Optimizer – Least-Square Support Vector Machine (ALO-LSSVM). From the results obtained, it can be concluded that GWO-LSSVM provide lower MAPE value which is 0.13% as compared to other methods.


Grey wolf optimizer, Load forecasting, LSSVM

Full Text:


DOI: http://doi.org/10.11591/ijai.v9.i3.pp417-423


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN/e-ISSN 2089-4872/2252-8938 
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

View IJAI Stats