DDoS attack detection using deep learning

Thapanarath Khempetch, Pongpisit Wuttidittachotti


Nowadays, IoT devices are widely used both in daily life and in corporate and industrial environments. The use of these devices has increased dramatically and by 2030 it is estimated that their usage will rise to 125 billion devices causing enormous flow of information. It is likely that it will also increase distributed denial-of-service (DDoS) attack surface. As IoT devices have limited resources, it is impossible to add additional security structures to it. Therefore, the risk of DDoS attacks by malicious people who can take control of IoT devices, remain extremely high. In this paper, we use the CICDDoS2019 dataset as a dataset that has improved the bugs and introducing a new taxonomy for DDoS attacks, including new classification based on flows network. We propose DDoS attack detection using the deep neural network (DNN) and long short-term memory (LSTM) algorithm. Our results show that it can detect more than 99.90% of all three types of DDoS attacks. The results indicate that deep learning is another option for detecting attacks that may cause disruptions in the future.


CICDDoS2019; DDoS; Deep learning; DNN; LSTM

Full Text:


DOI: http://doi.org/10.11591/ijai.v10.i2.pp382-388


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN/e-ISSN 2089-4872/2252-8938 
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

View IJAI Stats