A novel ontology framework supporting model-based tourism recommender

Ho Quoc Dung, Lien Thi Quynh Le, Nguyen Huu Hoang Tho, Tri Quoc Truong, Cuong H. Nguyen-Dinh

Abstract


In this paper, we present a tourism recommender framework based on the cooperation of ontological knowledge base and supervised learning models. Specifically, a new tourism ontology, which not only captures domain knowledge but also specifies knowledge entities in numerical vector space, is presented. The recommendation making process enables machine learning models to work directly with the ontological knowledge base from training step to deployment step. This knowledge base can work well with classification models (e.g., k-nearest neighbours, support vector machines, or naıve bayes). A prototype of the framework is developed and experimental results confirm the feasibility of the proposed framework.

Keywords


Ontology, Semantic similarity, Semantic vector, Supervised learning models, Tourism recommender

Full Text:

PDF


DOI: http://doi.org/10.11591/ijai.v10.i4.pp1060-1068

Refbacks

  • There are currently no refbacks.


View IJAI Stats

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.