Machine learning algorithms for electrical appliances monitoring system using open-source systems

Viet Hoang Duong, Nam Hoang Nguyen


Two main methods to minimize the impact of electricity generation on the environment are to exploit clean fuel resources and use electricity more effectively. In this paper, we aim to change the user's electricity usage by providing feedback about the electrical energy consumed by each device. The authors introduced two devices, load monitoring device (LMD) and activity monitoring device (AMD). The function of the LMD is to provide feedback on the operating status and energy consumption of electrical appliances in a home, which will help people consume electrical energy more efficiently. The parameters of LMD are used to predict the on/off state of each electrical appliance thanks to machine learning algorithms. AMD with audio sensors can assist LMD to distinguish electrical devices with the same or varying power over time. The system was tested for three weeks and achieved a state prediction accuracy of 93.60%.


Electrical appliance states; Machine learning; Open-source; Saving energy

Full Text:




  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN/e-ISSN 2089-4872/2252-8938 
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

View IJAI Stats