Design and analysis of face recognition system based on VGGFace-16 with various classifiers
Abstract
This research presents a face recognition system based on different classifiers that deal with various face positions. The proposed system involves the extraction of features through the VGG-Face-16 deep neural network, which only extracts essential features of input images, leading to an improved recognition step and enhanced algorithm efficiency, while the recognition involves the radial basis function in support vector machine (SVM) classifier and evaluate the performance of the system. Also, the system is designed and implemented later by using other classifiers; they are K-neareste2 neighbour (KNN) classifiers, logistic regression (LR), gradient boosting (XGBoost), decision tree classifier (DT) and Naive Bayes classifier (NB). The proposed algorithm was tested with the four face databases: AT&T, PINs Face, linear friction welding (LFW) and real database. The database was divided into two groups: One contains a percentage of images that are used for training and the second contains a percentage of images (remainder) which was used for testing. The results show that the classification by RBF in SVM has the highest recognition rate in the case of using small, medium and large databases; it was 100% in AT&T and Real database, while its efficiency appears to be lower when using large-size databases whereas it is 96% in PINs database and 60.1% in LFW database.
Keywords
Decision tree; K-nearest neighbour; Logistic regression; Naive Bayes; Support vector machine; VGG-Face-16; XGB
Full Text:
PDFDOI: http://doi.org/10.11591/ijai.v13.i2.pp1499-1510
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN/e-ISSN 2089-4872/2252-8938
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).