Fabric defect classification using transfer learning and deep learning
Abstract
The internal inspection of fabrics is one of the most important phases of production in order to achieve high quality standard in the textile industry. Therefore, developing efficient automatic internal control mechanism has been an extremely major area of research. In this paper, the famous architecture GoogLeNet was fine-tuned into two configurations for texture defect classification that was trained on a textile texture database (TILDA). The experimental result, for both configurations, achieved a significant overall accuracy score of 97% for motif and a non-motif-based images and 89% for mixed images. In the results obtained, it was observed that the second model, which updates the last six layers, was more successful than the first one; which updates the last two layers.
Keywords
Deep learning; Defect detection; Fabric quality; GoogLeNet; Transfer learning
Full Text:
PDFDOI: http://doi.org/10.11591/ijai.v12.i3.pp1378-1385
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN/e-ISSN 2089-4872/2252-8938
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).