Effective predictive modelling for coronary artery diseases using support vector machine

Kuncahyo Setyo Nugroho, Anantha Yullian Sukmadewa, Angga Vidianto, Wayan Firdaus Mahmudy

Abstract


Coronary artery disease (CAD) is a category of cardiovascular disease that causes the highest mortality rate in the world. CAD occurs due to plaque build-up on the walls of the arteries that supply blood to the heart and other organs of the body. To control the mortality rate, a practical model that is capable of predicting CAD is needed. Machine learning approaches have been used in solving various problems in various domains, including biomedicine. However, real-world data often has an unbalanced class distribution that can interfere with classifier performance. In addition, data has many features to process. This study focuses on effective modeling capable of predicting CAD using feature selection to handle high dimensional data and feature resampling to handle unbalanced data. Feature selection is very effective by eliminating irrelevant features from the training data. Hyperparameter tuning is also done to find the best combination of parameters in support vector machines (SVM). Our results show that the SVM cross-validated ten times has a more accurate training result. Furthermore, the grid search on SVM cross-validated ten times had more accurate training model results and achieved 88% accuracy on the test data.

Keywords


Coronary artery disease prediction; Effective support vector machines; Good support vector machines parameters

Full Text:

PDF


DOI: http://doi.org/10.11591/ijai.v11.i1.pp345-355

Refbacks

  • There are currently no refbacks.


View IJAI Stats

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.