COVID-19 epidemic: analysis and prediction

Santosini Bhutia, Bichitrananda Patra, Mitrabinda Ray


“Novel Coronavirus”, commonly known as COVID-19 has spread nearly to the entire world. The number of impacted cases and deaths has increased significantly in each country, posing a challenge for the world’s health organizations. The goal of this paper was to better comprehend and analyze the growth of the disease in India, including confirmed, recovered, fatalities, and active cases of COVID-19. Data analysis affects an organization’s decision-making process with interactive visual representation. The proposed model was an ensemble model that was built using linear regression, polynomial regression, and support vector machine (SVM) regression models. The model predicted the number of confirmed cases from 30 th May 2021 to 15 th June 2021 based on the data available from 22 January 2020 to 29 May 2021 and improved accuracy was obtained when compared with the actual data. Forecasting the confirmed cases might assist health organizations in planning medical facilities. Following that, an appropriate machine leraning (ML) model must be found that can predict the number of new cases in the future.


COVID-19; Ensemble method; Machine learning; Prediction; Regression;

Full Text:




  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN/e-ISSN 2089-4872/2252-8938 
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

View IJAI Stats