Facial expression recognition of masked faces using deep learning

Boutaina Hdioud, Mohammed El Haj Tirari


Facial expression recognition (FER) represents one of the most prevalent forms of interpersonal communication, which contains rich emotional information. But it became even more challenging during the times of COVID, where face masks became a mandatory protection measure, leading to the challenge of occluded lower-face during facial expression recognition. In this study, deep convolutional neural network (DCNN) represents the core of both our full-face FER system and our masked face FER model. The focus was on incorporating knowledge distillation in transfer learning between a teacher model, which is the full-face FER DCNN, and the student model, which is the masked face FER DCNN via the combination of both the loss from the teacher soft-labels vs the student soft labels and the loss from the dataset hard-labels vs the student hard-labels. The teacher-student architecture used FER2013 and a masked customized version of FER2013 as datasets to generate an accuracy of 69% and 61% respectively. Therefore, the study proves that the process of knowledge distillation may be used as a way for transfer learning and enhancing accuracy as a regular DCNN model (student only) would result in 46% accuracy compared to our approach (61% accuracy).


Deep neural networks; Facial expression recognition; Knowledge distillation; Masked face; Transfer learning

Full Text:


DOI: http://doi.org/10.11591/ijai.v12.i2.pp921-930


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN/e-ISSN 2089-4872/2252-8938 
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

View IJAI Stats