Automatic brain tumor detection using adaptive region growing with thresholding methods

Kadry Ali Ezzat, Lamia Nabil Omran, Ahmed Adel Ismail, Ahmed Ibrahim Bahgat El Seddawy


Brain cancer affects many people around the world. It's not just limited to the elderly; it is also recognized in children. With the development of image processing, early detection of mental development is possible. Some designers suggest deformable models, histogram averaging, or manual division. Due to constant manual intervention, these cycles can be uncomfortable and tiring. This research introduces a high-level system for the removal of malignant tumors from attractive reverberation images, based on a programmed and rapid distribution strategy for surface extraction and recreation for clinicians. To test the proposed system, acquired tomography images from the Cancer Imaging Archive were used. The results of the study strongly demonstrate that the intended structure is viable in brain tumor detection.


Brain; Segmentation; Thresholding; Tumor; Visualization

Full Text:




  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN/e-ISSN 2089-4872/2252-8938 
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

View IJAI Stats