Classifying electrocardiograph waveforms using trained deep learning neural network based on wavelet representation

Noor Yahya Jawad, Ahmed Mohammed Merza, Hussein Tami Sim

Abstract


Due to the rise in cardiac patients, an automated system that can identify different heart disorders has been created to lighten and distribute the duty of physicians. This research uses three different electrocardiograph (ECG) signals as indicators of a person's cardiac problems: Normal sinus rhythm (NSR), arrhythmia (ARR), and congestive heart failure (CHF). The continuous wavelet transform (CWT) provides the mechanism for classifying the 190 individual cases of ECG data into a 2-dimensional time-frequency representation. In this paper, the modified GoogLeNet is used for ECG data classification. Using a transfer learning approach and adjustments to parts of the output layers, ECG classification was conducted and the effectiveness of convolutional neural network (CNN) designs was tested. By comparing the results that the optimized neural network and GoogLeNet both had classification accuracy about of 80% and 100%, respectively. The GoogLeNet provide the best result in term of accuracy and training time.


Keywords


Continuous wavelet transforms; Convolutional neural network; Deep learning; Electrocardiograph; GoogLeNet;

Full Text:

PDF


DOI: http://doi.org/10.11591/ijai.v13.i1.pp408-416

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN/e-ISSN 2089-4872/2252-8938 
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

View IJAI Stats