Implementation of deep neural networks learning on unmanned aerial vehicle based remote-sensing

Shouket Abdulrahman Ahmed, Hazry Desa, Abadal-Salam T. Hussain, Taha A. Taha

Abstract


Due to efficient and adaptable data collecting, unmanned aerial vehicle (UAV) has been a popular topic in computer vision (CV) and remote sensing (RS) in recent years. Inspiring by the recent success of deep learning (DL), several enhanced object identification and tracking methods have been broadly applied to a variety of UAV-related applications, including environmental monitoring, precision agriculture, and traffic management. In this research, we present efficient neural network (ENet), a unique deep neural network architecture designed exclusively for jobs demanding low latency operation. ENet is up to quicker, takes fewer floating-point operations per second (FLOPs), has fewer parameters, and offers accuracy comparable to or superior to that of previous models. We have tested it on the street and cityscapes reports on comparisons with current state-of-the-art approaches and the tradeoffs between a network's processing speed and accuracy. We give measurements of the proposed architecture's performance on embedded devices and offer software enhancements that might make ENet even quicker.

Keywords


Deep learning; ENet; Neural network; Remote sensing; Unmanned aerial vehicle

Full Text:

PDF


DOI: http://doi.org/10.11591/ijai.v13.i1.pp941-947

Refbacks



Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN/e-ISSN 2089-4872/2252-8938 
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

View IJAI Stats