Parallel multivariate deep learning models for time-series prediction: A comparative analysis in Asian stock markets
Abstract
This study investigates deep learning models for financial data prediction and examines whether the architecture of a deep learning model and time-series data properties affect prediction accuracy. Comparing the performance of convolutional neural network (CNN), long short-term memory (LSTM), Stacked-LSTM, CNN-LSTM, and convolutional LSTM (ConvLSTM) when used as a prediction approach to a collection of financial time-series data is the main methodology of this study. In this instance, only those deep learning architectures that can predict multivariate time-series data sets in parallel are considered. This research uses the daily movements of 4 (four) Asian stock market indices from 1 January 2020 to 31 December 2020. Using data from the early phase of the spread of the Covid-19 pandemic that has created worldwide economic turmoil is intended to validate the performance of the analyzed deep learning models. Experiment results and analytical findings indicate that there is no superior deep learning model that consistently makes the most accurate predictions for all states' financial data. In addition, a single deep learning model tends to provide more accurate predictions for more stable time-series data, but the hybrid model is preferred for more chaotic time-series data.
Keywords
Chaotic data; Deep learning; Financial prediction; Multivariate model; Time-series;
Full Text:
PDFDOI: http://doi.org/10.11591/ijai.v13.i1.pp475-486
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN/e-ISSN 2089-4872/2252-8938
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).