Facial recognition based on enhanced neural network

Iman Hussein AL-Qinani, Kawther Thabt Saleh, Hayder Adnan Saleh


Accurate automatic face recognition (FR) has only become a practical goal of biometrics research in recent years. Detection and recognition are the primary steps for identifying faces in this research, and The Viola-Jones algorithm implements to discover faces in images. This paper presents a neural network solution called modify bidirectional associative memory (MBAM). The basic idea is to recognize the image of a human's face, extract the face image, enter it into the MBAM, and identify it. The output ID for the face image from the network should be similar to the ID for the image entered previously in the training phase. The tests have conducted using the suggested model using 100 images. Results show that FR accuracy is 100% for all images used, and the accuracy after adding noise is the proportions that differ between the images used according to the noise ratio. Recognition results for the mobile camera images were more satisfactory than those for the Face94 dataset. 


Detection; Face94; Neural network; Recognition; Viola-Jones;

Full Text:


DOI: http://doi.org/10.11591/ijai.v13.i1.pp207-216


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN/e-ISSN 2089-4872/2252-8938 
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

View IJAI Stats