The prediction of Bitcoin price through gold price using long short-term memory model

Jae Won Choi, Young Keun Choi


The majority of research on predicting the price of Bitcoin employs technical methods to enhance long short-term memory models' effectiveness. Although some studies employ different machine learning techniques, such as economic or technical indicators, their precision is inadequate. Thus, this research aims to introduce a model that predicts the price of Bitcoin by utilizing the long short-term memory (LSTM) technique and incorporating gold's economic and technical data as features. The research collected gold and Bitcoin price data from FinanceDataReader for around seven years, from January 1, 2016, to January 22, 2023, consisting of six categories: date, open, high, low, close, volume, and change (based on dollars). The normalized closing price data was trained for 50 epochs, resulting in the loss value reaching close to zero. The model's accuracy was measured by mean squared error, resulting in a score of 0.0004. This study's importance is two-fold: firstly, it can provide cryptocurrency-related businesses with more accurate predictions and improved risk management indicators. Secondly, incorporating economic metrics can address the limitations of overfitting and a single model's poor performance.


Bitcoin price prediction; Cryptocurrency; Long short-term memory;

Full Text:




  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN/e-ISSN 2089-4872/2252-8938 
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

View IJAI Stats