Efficient plant leaf detection through machine learning approach based on corn leaf image classification

Premakumari Pujar, Ashutosh Kumar, Vineet Kumar


Since maize is a staple diet for people, especially vegetarians and vegans, maize leaf disease has a significant influence here on the food industry including maize crop productivity. Therefore, it should be understood that maize quality must be optimal; yet, to do so, maize must be safeguarded from several illnesses. As a result, there is a great demand for such an automated system that can identify the condition early on and take the appropriate action. Early disease identification is crucial, but it also poses a major obstacle. As a result, in this research project, we adopt the fundamental k-nearest neighbor (KNN) model and concentrate on building and developing the improved k-nearest neighbor (EKNN) model. EKNN aids in identifying several classes of disease. To gather discriminative, boundary, pattern, and structurally linked information, additional high-quality fine and coarse features are generated. This information is then used in the classification process. The classification algorithm offers high-quality gradient-based features. Additionally, the proposed model is assessed using the Plant-Village dataset, and a comparison with many standard classification models using various metrics is also done.


Enhanced k-nearest neighbor; Image processing; K-nearest neighbor; Leaf disease classification; Plant disease detection; Plant leaf disease identification

Full Text:


DOI: http://doi.org/10.11591/ijai.v13.i1.pp1139-1148


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN/e-ISSN 2089-4872/2252-8938 
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

View IJAI Stats