A recommender system-using novel deep network collaborative filtering

Shruthi Nagaraj, Blessed Prince Palayyan


The recommendation model aims to predict the user’s preferred items among million through analyzing the user-item relations; furthermore, Collaborative Filtering has been utilized as one of the successful recommendation approaches in last few years; however, it has the issue of sparsity. This research work develops a deep network collaborative filtering (DeepNCF), which incorporates graph neural network (GNN), and novel network collaborative filtering (NCF) for performance enhancement. At first user-item dual network is constructed, thereafter-custom weighted dual mode modularity is developed for edge clustering. Furthermore, GNN is utilized for capturing the complex relation between user and item. DeepNCF is evaluated considering the two distinctive. The experimental analysis is carried out on two datasets for Amazon and movielens dataset for recall@20 and recall@50 and the normalized discounted cumulative gain (NDCG) metric is evaluated for Amazon Dataset for NDCG@20 and NDCG@50. The proposed method outperforms the most relevant research and is accurate enough to give personalized recommendations and diversity.


Deep network collaborative filtering; Dual network; Graph neural network; Network collaborative filtering; Recommender system;

Full Text:


DOI: http://doi.org/10.11591/ijai.v13.i1.pp786-797


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN/e-ISSN 2089-4872/2252-8938 
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

View IJAI Stats