Machine learning-based decision-making approach for predicting defects detection: a case study
Abstract
In today’s highly competitive global market, industries must produce faultless products to achieve profitability. Machine learning (ML) algorithms provide a possible method to improve quality standards by enabling the prediction of the outcome of quality control processes. This article presents a real case study based on ML algorithms suggested to develop a knowledge-based intelligent supervisory system to predict defect products in the fashion industry. Defect detection is formulated as a binary classification problem, and several ML algorithms have been compared to determine the most suitable one on the available data. The random forest (RF), LightGBM, and C5.0 algorithms exhibit comparable high-end performances on the pre-processed dataset made available by the company. Nevertheless, since the aim of the analysed industry is to reduce the rate of false negative observations (i.e., the proportion of defected-free products wrongly classified), the best method results is RF, as it minimizes this metric.
Keywords
Defect production; Fashion industry; Machine learning; Predictive quality; Quality control
Full Text:
PDFDOI: http://doi.org/10.11591/ijai.v13.i3.pp3052-3060
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN/e-ISSN 2089-4872/2252-8938
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).