Multi-channel microseismic signals classification with convolutional neural networks
Abstract
Identifying and classifying microseismic signals is essential to warn of mines’ dangers. Deep learning has replaced traditional methods, but labor-intensive manual identification and varying deep learning outcomes pose challenges. This paper proposes a transfer learning-based convolutional neural network (CNN) method called microseismic signals-convolutional neural network (MS-CNN) to automatically recognize and classify microseismic events and blasts. The model was instructed on a limited sample of data to obtain an optimal weight model for microseismic waveform recognition and classification. A comparative analysis was performed with an existing CNN model and classical image classification models such as AlexNet, GoogLeNet, and ResNet50. The outcomes demonstrate that the MS-CNN model achieved the best recognition and classification effect (99.6% accuracy) in the shortest time (0.31 s to identify 277 images in the test set). Thus, the MS-CNN model can efficiently recognize and classify microseismic events and blasts in practical engineering applications, improving the recognition timeliness of microseismic signals and further enhancing the accuracy of event classification.
Keywords
Classification; Convolutional neural network; Microseismic events; Multi-channel waveform; Recognition; Transfer learning
Full Text:
PDFDOI: http://doi.org/10.11591/ijai.v13.i1.pp1038-1049
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN/e-ISSN 2089-4872/2252-8938
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).