Hybrid channel and spatial attention-UNet for skin lesion segmentation

Soumya Gadag, Pradeepa Palraj


Melanoma is a type of skin cancer which has affected many lives globally. The American Cancer Society research has suggested that it a serious type of skin cancer and lead to mortality but it is almost 100% curable if it is detected and treated in its early stages. Currently automated computer vision-based schemes are widely adopted but these systems suffer from poor segmentation accuracy. To overcome these issue, deep learning (DL) has become the promising solution which performs extensive training for pattern learning and provide better classification accuracy. However, skin lesion segmentation is affected due to skin hair, unclear boundaries, pigmentation, and mole. To overcome this issue, we adopt UNet based deep learning scheme and incorporated attention mechanism which considers low level statistics and high-level statistics combined with feedback and skip connection module. This helps to obtain the robust features without neglecting the channel information. Further, we use channel attention, spatial attention modulation to achieve the final segmentation. The proposed DL based scheme is instigated on publically available dataset and experimental investigation shows that the proposed Hybrid Attention UNet approach achieves average performance as 0.9715, 0.9962, 0.9710.


Computer vision; Deep learning; Image processing; Melanoma; Segmentation

Full Text:


DOI: http://doi.org/10.11591/ijai.v13.i1.pp1077-1089


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN/e-ISSN 2089-4872/2252-8938 
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

View IJAI Stats