Deep learning based biometric authentication using electrocardiogram and iris
Abstract
Authentication systems play an important role in wide range of applications. The traditional token certificate and password-based authentication systems are now replaced by biometric authentication systems. Generally, these authentication systems are based on the data obtained from face, iris, electrocardiogram (ECG), fingerprint and palm print. But these types of models are unimodal authentication, which suffer from accuracy and reliability issues. In this regard, multimodal biometric authentication systems have gained huge attention to develop the robust authentication systems. Moreover, the current development in deep learning schemes have proliferated to develop more robust architecture to overcome the issues of tradition machine learning based authentication systems. In this work, we have adopted ECG and iris data and trained the obtained features with the help of hybrid convolutional neural network- long short-term memory (CNN-LSTM) model. In ECG, R peak detection is considered as an important aspect for feature extraction and morphological features are extracted. Similarly, gabor-wavelet, gray level co-occurrence matrix (GLCM), gray level difference matrix (GLDM) and principal component analysis (PCA) based feature extraction methods are applied on iris data. The final feature vector is obtained from MIT-BIH and IIT Delhi Iris dataset which is trained and tested by using CNN-LSTM. The experimental analysis shows that the proposed approach achieves average accuracy, precision, and F1-core as 0.985, 0.962 and 0.975, respectively.
Keywords
Biometric authentication; Classification; Deep learning; Electrocardiogram; Feature extraction; Iris
Full Text:
PDFDOI: http://doi.org/10.11591/ijai.v13.i1.pp1090-1103
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN/e-ISSN 2089-4872/2252-8938
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).