A deep learning-based approach for early detection of disease in sugarcane plants: an explainable artificial intelligence model

Rubini Pudupet Ethiraj, Kavitha Paranjothi


In many regions of the nation, agriculture serves as the primary industry. The farming environment now faces a number of challenges to farmers. One of the major concerns, and the focus of this research, is disease prediction.
A methodology is suggested to automate a process for identifying disease in plant growth and warning farmers in advance so they can take appropriate action. Disease in crop plants has an impact on agricultural production. In this work, a novel DenseNet-support vector machine: explainable artificial intelligence (DNet-SVM: XAI) interpretation that combines a DenseNet with support vector machine (SVM) and local interpretable model-agnostic explanation (LIME) interpretation has been proposed. DNet-SVM: XAI was created by a series of modifications to DenseNet201, including the addition of a support vector machine (SVM) classifier. Prior to using SVM to identify if an image is healthy or un-healthy, images are first feature extracted using a convolution network called DenseNet. In addition to offering a likely explanation for the prediction, the reasoning is carried out utilizing the visual cue produced by the LIME. In light of this, the proposed approach, when paired with its determined interpretability and precision, may successfully assist farmers in the detection of infected plants and recommendation of pesticide for the identified disease.


Agnostic explanation agriculture; DenseNet; Disease detection; Local interpretable model; Support vector machine

Full Text:


DOI: http://doi.org/10.11591/ijai.v13.i1.pp974-983


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN/e-ISSN 2089-4872/2252-8938 
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

View IJAI Stats