Optically processed Kannada script realization with Siamese neural network model

Ambili Parathra Sreedharanpillai, Biku Abraham, Arun Kotapuzakal Varghese


Optical character recognition (OCR) is a technology that allows computers to recognize and extract text from images or scanned documents. It is commonly used to convert printed or handwritten text into machine-readable format. This Study presents an OCR system on Kannada Characters based on siamese neural network (SNN). Here the SNN, a Deep neural network which comprises of two identical convolutional neural network (CNN) compare the script and ranks based on the dissimilarity. When lesser dissimilarity score is identified, prediction is done as character match. In this work the authors use 5 classes of Kannada characters which were initially preprocessed using grey scaling and convert it to pgm format. This is directly input into the Deep convolutional network which is learnt from matching and non-matching image between the CNN with contrastive loss function in Siamese architecture. The Proposed OCR system uses very less time and gives more accurate results as compared to the regular CNN. The model can become a powerful tool for identification, particularly in situations where there is a high degree of variation in writing styles or limited training data is available.


Deep neural network dissimilarity score; Optical character recognition deep learning; Siamese neural networks

Full Text:


DOI: http://doi.org/10.11591/ijai.v13.i1.pp1112-1118


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN/e-ISSN 2089-4872/2252-8938 
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

View IJAI Stats