A Fletcher-Reeves conjugate gradient algorithm-based neuromodel for smart grid stability analysis
Abstract
Interest in smart grid systems is growing around the globe as they are getting increasingly popular for their efficiency and cost reduction at both ends of the energy spectrum. This study, therefore, proposes a neuro model designed and optimized with the Fletcher-Reeves conjugate gradient algorithm for analyzing the stability of smart grids. The performance results achieved with this algorithm was compared with those obtained when the same network was trained with other algorithms. Our results show that the proposed model outperforms existing techniques in terms of accuracy, efficiency, and speed. This study contributes to the development of intelligent solutions for smart grid stability analysis, which can enhance the reliability and sustainability of power systems.
Keywords
Conjugate gradient algorithm; Fletcher-Reeves; Neuro model; Power systems stability; Smart grid;
Full Text:
PDFDOI: http://doi.org/10.11591/ijai.v14.i1.pp159-165
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN/e-ISSN 2089-4872/2252-8938
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).