1-dimensional convolutional neural networks for predicting sudden cardiac

Viswavardhan Reddy Karna, Karna Vishnu Vardhana Reddy


Sudden cardiac arrest (SCA) is a serious heart problem that occurs without symptoms or warning. SCA causes high mortality. Therefore, it is important to estimate the incidence of SCA. Current methods for predicting ventricular fibrillation (VF) episodes require monitoring patients over time, resulting in no complications. New technologies, especially machine learning, are gaining popularity due to the benefits they provide. However, most existing systems rely on manual processes, which can lead to inefficiencies in disseminating patient information. On the other hand, existing deep learning methods rely on large data sets that are not publicly available. In this study, we propose a deep learning method based on one-dimensional convolutional neural networks to learn to use discrete fourier transform (DFT) features in raw electrocardiogram (ECG) signals. The results showed that our method was able to accurately predict the onset of SCA with an accuracy of 96% approximately 90 minutes before it occurred. Predictions can save many lives. That is, optimized deep learning models can outperform manual models in analyzing long-term signals.


Arrhythmic risk markers; Electrocardiogram; Machine learning; Sudden cardiac death; Sudden cardiac death prediction

Full Text:


DOI: http://doi.org/10.11591/ijai.v13.i1.pp984-993


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN/e-ISSN 2089-4872/2252-8938 
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

View IJAI Stats