Improved performance of fake account classifiers with percentage overlap features selection

Aris Tjahyanto, Rivanda Putra Pratama, Ary Mazharuddin Shiddiqi

Abstract


Feature selection plays a crucial role in the development of high-performance classification models. We propose an innovative method for detecting fake accounts. This method leverages the percentage overlap technique to refine feature selection. We introduce our technique upon earlier work that showcased the enhanced efficacy of the Naïve Bayesian classifier through dataset normalization. Our study employs a dataset of account profiles sourced from Twitter, which we normalize using the Min-Max method. We analyze the results through a series of comprehensive experiments involving diverse classification algorithms—such as Naïve Bayes, decision tree, k-nearest neighbors (KNN), deep learning, and support vector machines (SVM). Our experimental results demonstrate a 100% accuracy achieved by the SVM and deep learning classifiers. The results are attributed to the percentage overlap technique, which facilitates the identification of four highly informative features. These findings outperform models with more extensive feature sets, underscoring the efficacy of our approach.

Keywords


Fake users; Fake accounts; Feature selection; Bots; Internet

Full Text:

PDF


DOI: http://doi.org/10.11591/ijai.v13.i2.pp1585-1595

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN/e-ISSN 2089-4872/2252-8938 
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

View IJAI Stats