Barcode-less Fruits Classification Using Deep Learning

Amal Abdel-raouf, Alaa Sheta, AbdelKarim Baareh, Peter Rausch

Abstract


Barcode-less fruit recognition technology has revolutionized the checkout process by eliminating manual barcode scanning. This technology automatically identifies and adds fruit items to the purchase list, significantly reducing waiting times at the cash register. Faster checkouts enhance customer convenience and optimize operational efficiency for retailers. Adding barcode to fruits require using adhesives on the fruit surface that may cause health hazards. Leveraging deep learning techniques for barcode-less fruit recognition brings valuable advantages to industries, including advanced automation, enhanced accuracy, and increased efficiency. These benefits translate into improved productivity, cost reduction, and superior quality control. This study introduces a Convolutional Neural Network (CNN) designed explicitly for automatic fruit recognition, even in challenging real-world scenarios. The proposed method assists fruit sellers in accurately identifying and distinguishing between different types of fruit that may exhibit similarities. A dataset that includes 44,406 images of different fruit types is used to train and test our technique. Employing a CNN, the developed model achieves an impressive classification accuracy of 97.4% during the training phase and 88.6% during the testing phase respectively, showcasing its effectiveness in precise fruit recognition.


Keywords


Convolution Neural Network; Fruit Detection; Classification

Full Text:

PDF


DOI: http://doi.org/10.11591/ijai.v13.i3.pp3211-3217

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN/e-ISSN 2089-4872/2252-8938 
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

View IJAI Stats