DualFaceNet: augmentation consistency for optimal facial landmark detection and face mask classification

Kritaphat Songsri-in, Munlika Rattaphun, Sopee Kaewchada, Somporn Ruang-on

Abstract


In an era where face masks are commonplace, facial recognition faces new challenges and opportunities. This study introduces DualFaceNet (DFN), a cutting-edge neural network that efficiently combines facial landmark detection with mask classification. Benefiting from multi-task learning (MTL) and enhanced with a unique consistency loss, DFN outperforms traditional single-task models. Tests using the reputable 300W dataset and a face mask dataset showcase DFN’s strengths: a significant reduction in landmark error to 5.42 and an increase in mask classification accuracy to 92.59%. These results highlight the potential of integrating MTL and custom loss functions in facial recognition. As face masks continue to be globally essential, DFN’s integrated approach offers a fresh perspective in facial recognition studies. Furthermore, DFN paves the way for adaptive facial recognition systems, emphasizing the adaptability needed in our current era.


Keywords


Consistency loss; Deep learning; Face landmark detection; Face mask classification; Multi-task learning

Full Text:

PDF


DOI: http://doi.org/10.11591/ijai.v13.i3.pp3228-3239

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN/e-ISSN 2089-4872/2252-8938 
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

View IJAI Stats