Deep learning approach for forensic facial reconstruction depends on unidentified skull
Abstract
Facial reconstruction, or facial approximation, is an essential problem in a criminal investigation involving reconstructing a victim's face from his skull to determine the victim's identification at a crime scene. Facial approximation plays a crucial part when there is a lack of clues with investigators. Investigators utilize facial approximation to guess the victims' identities. This research attempted to use computer-aided face reconstruction rather than traditional approaches. Traditional methods of face reconstruction include the use of clay or gypsum. Traditional procedures necessitate forensic professionals to rebuild the victim's face. This research uses the convolution neural network skull part with sift (CNNSPS) model is employed to reconstruct facial features from a skull image utilizing public datasets CelebAMask-HQ and MUG500+. The proposed algorithm was tested on unidentified skull databases, and celebrity faces were used. The genuine datasets are not available, which is the key issue in this research.
Keywords
Facial approximation; Facial reconstruction; Forensic deep learning; Unidentified skulls; Victim's face; Victim's identification
Full Text:
PDFDOI: http://doi.org/10.11591/ijai.v13.i4.pp3858-3868
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Institute of Advanced Engineering and Science
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN/e-ISSN 2089-4872/2252-8938
This journal is published by the Institute of Advanced Engineering and Science (IAES).