A relation network for plant disease detection based on fewshot learning

S. Hemalatha, Jai Jaganath Babu Jayachandran

Abstract


Accurate and timely disease detection remains a critical challenge in plant health management. Conventional methods often struggle to effectively differentiate between healthy and diseased plants, leading to compromised agricultural productivity and food security. In response to this pressing issue, this paper presents an innovative solution in the form of a novel few-shot learning (FSL) classifier, based on relation network (RN) specifically designed for precise plant disease detection from limited image samples. Leveraging inherent relationships between samples, the proposed relation network for plant disease classification (RN-PDC) enhances the detection performance by capturing intricate patterns within the data. Through comprehensive evaluation on a public image data subset, RN-PDC achieves exceptional detection accuracies of 0.9984 and 0.9967 in binary and multiclass classifications, respectively. This advancement holds great promise for revolutionizing disease diagnosis in the field of plant health, ultimately fostering more productive and sustainable agricultural practices. 

Keywords


Classification; Detection; Fewshot learning; Plant disease; Relation network

Full Text:

PDF


DOI: http://doi.org/10.11591/ijai.v13.i4.pp4499-4508

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Institute of Advanced Engineering and Science

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN/e-ISSN 2089-4872/2252-8938 
This journal is published by the Institute of Advanced Engineering and Science (IAES).

View IJAI Stats