Fuzzy logic for the management of vaccination during pandemics: A spread-rate-based approach

Abdul Kareem, Varuna Kumara

Abstract


Pandemics, such as coronavirus disease COVID-19 are known to cause massive damage to the world's economic growth and their impacts are serious and influence across every aspect of social structure. The most inevitable factor in responding to the disaster of pandemics is the right management in terms of allocating a limited vaccine supply. The focus of this research work is to utilize a fuzzy logic inference system in the allocation of vaccine doses to the regional authorities by a central authority. The objective is obtained by designing a system based on fuzzy logic that considers the spread rate as the input to infer the vaccination rate of the local population. This system makes it possible for sufficient doses of vaccines to be allotted to the prioritized regions where the severity of the spread rate is a concern and vaccines are not held up in regions where the severity of the spread rate is lesser. The designed system is verified using MATLAB software, which shows that this method can ensure an effective and efficient allocation of vaccination in the local regions and aid the fight against the disastrous spread of the disease.


Keywords


Fuzzy logic; Mamdani inference; Pandemic; Vaccination; MATLAB

Full Text:

PDF


DOI: http://doi.org/10.11591/ijai.v13.i3.pp2808-2815

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN/e-ISSN 2089-4872/2252-8938 
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

View IJAI Stats