TMS320F28379D microcontroller for speed control of permanent magnet direct current motor

Tanawat Chalardsakul, Chotnarin Piliyasilpa, Viroch Sukontanakarn

Abstract


This paper aims to study the behavior of the proportional integral derivative (PID) and the fuzzy-based tuning PI-D controller for speed control of a permanent magnet direct current (PMDC) motor. The proposed method used a fuzzy-based tuning PI-D controller with a MATLAB/Simulink program to design and real-time implement a TMS320F28379D microcontroller for speed control of a PMDC motor. The performance of the study designed fuzzy-based tuning PI-D and PID controllers is compared and investigated. The fuzzy logic controller applies the controlling voltage based on motor speed errors. Finally, the result shows the fuzzy-based tuning PI-D controller approach has a minimum overshoot, and minimum transient and steady state parameters compared to the PID controller to control the speed of the motor. The PID controllers have poorer performance due to the non-linear features of the PMDC motor.


Keywords


Fuzzy logic controller; MATLAB/Simulink; Microcontroller; Permanent magnet DC motor; PID controller

Full Text:

PDF


DOI: http://doi.org/10.11591/ijai.v13.i3.pp2816-2828

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN/e-ISSN 2089-4872/2252-8938 
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

View IJAI Stats