Novel maternal risk factors for preeclampsia prediction using machine learning algorithms

Seeta Devi, Payal Purushottam Bhagat, Harshita Gupta, Harikrishnan R., Gorakh Mandrupkar

Abstract


Preeclampsia and eclampsia are the most common obstetric disorders associated with poor maternal and neonatal outcome. The study’s primary objective is to assess the accuracy of novel high-risk factors core using machine learning algorithms in predicting preeclampsia. The study included 400 pregnant women and used 27 novel high-risk factors to predict preeclampsia. The target variables for predicting preeclampsia are systolic and diastolic blood pressures. Various algorithms, including decision tree (DT), random forest (RF), gradient boosting, support vector machine (SVM), K-neighbors, light gradient boosting machine (LGBM), multi-layer perceptron (MLP), Adaboost classifier, and extra trees classifier are used in the analysis. The accuracy and precision of the LGBM classifier (0.85 and 0.9583 with F1 0.7188), support vector classifier (0.8417 and 0.92 with F1 0.7077), DT (0.825 and 0.913 with F1 0.6667), and extra trees (0.8167 and 0.9091 with F1 0.6452) are found to be better algorithms for prediction of preeclampsia. According to the novel high-risk factors score, 17.5% of pregnant women were identified as being at high risk for preeclampsia during the first trimester, which increased to 18.7% in 3rd trimester; in addition, 16% of pregnant women had a blood pressure of 140/90 mmHg and the above. Novel, high-risk scores and machine learning algorithms can effectively predict preeclampsia at an early period.

Keywords


Hypertension; Mixed machine learning algorithms; Novel risk factors score; Prediction; Preeclampsia; Pregnancy induced

Full Text:

PDF


DOI: http://doi.org/10.11591/ijai.v13.i4.pp4544-4556

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN/e-ISSN 2089-4872/2252-8938 
This journal is published by the Institute of Advanced Engineering and Science (IAES).

View IJAI Stats