Sentiment-electroencephalogram fusion for efficient product review prediction using correlation-based deep learning neural network

Rahul Kumar Sharma, Arvind Dagur

Abstract


Various techniques have been proposed and implemented in previous work for sentiment analysis prediction. However, achieving satisfactory quality of description and fault prediction remains a challenging task. To overcome these limitations, this study proposes an efficient prediction technique that utilizes sentiment analysis of product reviews and electroencephalogram (EEG) signals using correlation-based deep learning neural network (CDNN). The study employs two types of datasets: EEG signals and Amazon product reviews. During the pre-processing phase, EEG signals undergo normalization, while Amazon product reviews undergo tokenization, stop word removal, and weighting factor application to convert unstructured data into a structured format. Subsequently, the pre-processed EEG signals and reviews are analyzed to extract features like emotion, demographic information, personality traits, and sentiment. These features are then employed in sentiment analysis via an entropy-based deep-learning neural network. The proposed CDNN utilizes the grasshopper optimization algorithm (EGOA) to optimize hyperparameters for each layer. Comparative performance assessment against established methods like convolutional neural network (CNN), long short-term memory (LSTM), multiclass support vector machine (M-SVM), and bidirectional encoder representations from transformers (BERT) is conducted, and the results are evaluated. Experimental result reveal that the proposed system outperforms traditional approaches.

Keywords


Correlation-based deep learning neural network; Entropy value; Grasshopper optimisation algorithm; Sentiment analysis; Weighting factor

Full Text:

PDF


DOI: http://doi.org/10.11591/ijai.v13.i4.pp4675-4687

Refbacks



Copyright (c) 2024 Institute of Advanced Engineering and Science

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN/e-ISSN 2089-4872/2252-8938 
This journal is published by the Institute of Advanced Engineering and Science (IAES).

View IJAI Stats