Optimizing potato crop productivity: a meteorological analysis and machine learning approach

Md. Jiabul Hoque, Md. Saiful Islam, Abdullah Al Noman, Md. Abrarul Hoque, Irfan A. Chowdhury, Mohammad Saifuddin

Abstract


Motivated by the critical need to enhance potato production in Bangladesh, particularly in the face of a changing climate, this study investigates the significant impact of weather on potato yield. This research employs various statistical and machine-learning approaches to identify key weather factors influencing potato crops. We utilize ANOVA F regression and random forest (RF) with feature importance analysis to pinpoint crucial monthly weather variables. Additionally, a correlation study employing Pearson's and Spearman's coefficients alongside p-values is conducted to determine the relationships between weather conditions and crop yield. Seaborn's bivariate kernel density estimation is then used to visualize ideal weather conditions for optimal harvests. Furthermore, to predict future yields, the study implements thoroughly trained and validated machine learning models including k-nearest neighbors (KNN), RF, and support vector regressor (SVR). Our analysis reveals that the RF model emerges as the most reliable predictor, achieving a high correlation coefficient (R²=0.9990), and minimal error values (mean absolute percentage error (MAPE)=0.70, mean absolute error (MAE)=0.0803, and root mean square error (RMSE)=0.1114). These findings provide valuable insights to guide informed agricultural decisions and climate-related strategies, particularly for resource-limited countries like Bangladesh.

Keywords


Correlation analysis; Early yield forecasting; Enhance potato production; Feature importance analysis; Feature selection; Machine learning; Random forest;

Full Text:

PDF


DOI: http://doi.org/10.11591/ijai.v14.i2.pp1116-1129

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN/e-ISSN 2089-4872/2252-8938 
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

View IJAI Stats